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We investigate Gaussian spherical quadrature as a method for
calculating orientational averages in solid-state NMR. For the case
of magic-angle-spinning sideband amplitudes of isolated spins-1/2,
we demonstrate the superiority of Gaussian spherical quadrature
over other orientational averaging methods. Depending on the
shift anisotropy parameters and the desired accuracy, the compu-
tation speed is enhanced by a large factor (between two and many
hundreds). In addition, a method for improving any present sam-
pling scheme is devised. Such schemes are called SHREWD
(Spherical Harmonic Reduction or Elimination by a Weighted
Distribution). The role of orientational symmetry in solid-state
NMR is explored. We also discuss the limitations of the Gaussian
spherical quadrature methods. © 1998 Academic Press
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erage; orientational symmetry; Gaussian spherical quadrature.

INTRODUCTION

Solid-state NMR is a powerful method for obtaining geo-
metrical and dynamical information at the molecular level. As
opposed to liquid-state NMR, theanisotropicspin interactions
are directly accessible. The magnitude and direction of these
interactions are closely linked to the local molecular structure.
For example, the through-space dipole–dipole coupling is di-
rectly related to the distance between nuclei and the bond
directions. Recently developed experiments allow estimation
of internuclear distances (1–3) and molecular torsional and
interbond angles (4–7), even in biomolecules with high mo-
lecular weights.

Solid-state NMR methods are often applied to systems with no
long-range molecular order, such as powders, polycrystalline ma-
terials, most polymers, and amorphous materials. The NMR re-
sponse of nonoriented samples is a superposition of signals from
very many molecular orientations. In most cases, the NMR signal
cannot be derived analytically and must be calculated numeri-
cally. The numerical simulation must therefore incorporate a
‘‘powder average’’ over all possible molecular orientations. Since
the computation of the NMR signal for each orientation is often
time-consuming, it is highly desirable that a reasonable numerical
approximation to a full powder average be obtained using a
minimum number of orientational samples.

This raises the issue of how to select the molecular orienta-
tions used in the simulation. The most obvious scheme is
simply to generate the orientational samples randomly, so as to
emulate the physical situation in a real unoriented sample.
Unfortunately, a real powder consists of an enormous number
of orientations—for example, 100ml powder in which each
crystallite consists of a cube with side 10mm contains 108

separate crystallites. Usually, it is out of the question to sim-
ulate such a large number of orientations.

A random sampling scheme performs poorly if the number
of orientational samples is reduced to a few hundred. This is
because thinly distributed random values tend to form
‘‘clumps’’—a well-known example is the formation of con-
stellations of stars in the night sky. Improved sampling strat-
egies tend to concentrate on reducing the ‘‘clumping’’ as much
as possible, by ensuring that the orientational samples are
evenly distributed. Normally, geometrical arguments are used
to distribute the orientational samples as evenly as possible
(like the placement of dimples on the surface of a golf ball (8)).
We refer to such approaches as ‘‘geometrical.’’

In this article we stress a different approach, which is ‘‘math-
ematical’’ rather than ‘‘geometrical’’ in essence. The method is
based on an assumption that the function to be averaged may be
expressed accurately as a finite series of orthogonal functions,
where each function is multiplied by an (unknown) coefficient.
One of these coefficients is the accurate average of the function.
The orientational samples are then selected so that a large number
of the remaining functions are eliminated identically, leaving only
the target coefficient: the orientational average. The most impor-
tant schemes of this type were developed by Lebedev (9–12). The
Lebedev schemes are widely used in other branches of science,
especially in density functional theory (13–15). We show here that
they have significant advantages for some problems in solid-state
NMR as well.

The design of optimal orientational sampling schemes de-
pend greatly on thesymmetryof the function to be averaged
with respect to the orientational variable. The Lebedev
schemes appear to be particularly suitable when the averaged
function displays some kind of orientational symmetry. One
section of this article attempts to classify solid-state NMR
problems in terms of the symmetry they display.1 Corresponding author: mattias@physc.su.se.
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ORIENTATIONAL AVERAGING

Euler Angles and Reference Frames

In general, numerical calculations of solid-state NMR signals
involve the calculation of an orientationally dependent function
f(V), where the orientationV may conveniently be expressed as
an Euler angle tripletV 5 (a, b, g) (16). The function may also
depend on other parameters as well, not indicated explicitly here.
The Euler anglesV 5 (a, b, g) represent the relationship between
two different reference frames.

The proper choice of these reference frames depends on the
problem. For example, in rotating solids,V refers to the
relationship between a molecular reference frameM, fixed with
respect to the molecular framework, and a rotor-reference
frame R, fixed with respect to the rotating sample holder
(‘‘rotor’’). The Euler angles are then notatedVMR 5 (aMR,
bMR, gMR). In static solids, it is usually more appropriate to
choose a ‘‘laboratory’’ reference frameL, fixed with respect to
the applied magnetic field. In this case the Euler angles are
notatedVML 5 (aML, bML, gML).

In all cases, the key points are (i) the orientational angles
VMR or VML are time-independent over the duration of the
experiment, and (ii) the actual physical situation may be rep-
resented accurately by an integration over all possible values of
the orientational variable. For example, in a rotating solid it
would be inappropriate to useVML as a variable, because these
Euler angles are time-dependent.

If the NMR spin dynamics depend only on a single aniso-
tropic interactionL, it is possible to choose the molecular
frame to coincide with the principal axis system (PAS) ofL,
denotedPL. The relevant orientational variable is then written
VPR

L (for rotating solids) orVPL
L (for static solids). The number

of sampled orientations may be considerably reduced in this
case, as discussed later.

In the following discussion, the variableV is used to refer to
the appropriate variableVMR, VRL, VPR

L or VPL
L , depending on

the problem.

Orientational Averaging—the General Case

The orientational average off corresponds to the integral

f# 5 1~3!E
V ~3!

f ~V !dV , [1]

where the volume of integrationV(3) represents the ranges for
the three Euler angles,

V~3! 5 $0 # a , 2p, 0 # b # p, 0 # g , 2p %

dV 5 sinb da db dg , [2]

and the normalization constant is

1~3! 5 ~8p2!21. [3]

In numerical calculations, this integral is approximated by
summing the function over a set ofNS different orientations
and weightsS 5 { wj

S, Vj
S},

f# S5O
j51

NS

wj
Sf ~V j

S! , [4]

where the weights are normalized so that their sum equals
unity. f# S is the estimateof the powder averagef#, using the
sampling schemeS. The optimum sampling schemeS for a
given number of samplesNS minimizes the error of integration
eS, defined by

eS 5 |f# 2 f# S| . [5]

Two-Angle Integration

In many important cases, it is not necessary to perform the
integration over the angleg explicitly. Either the functionf is
independent ofg, or the average overg may be performed
implicitly by a modification of the function itself (17–19). Some
examples are given later. In these cases, the orientational averag-
ing of the function reduces to atwo-angle integration,specified by

f# 5 1~2!E
V ~2!

f ~V !dV , [6]

where

V~2! 5 $0 # a , 2p, 0 # b # p %

dV 5 sinb da db

1~2! 5 ~4p !21. [7]

In this case, it is possible to use the following relationship
between the two Euler angles (a, b) and the polar angles (u, f):
u [ b and f [ a. The two-angle orientational average is
equivalent to the integration of a function on the surface of a
sphere, a property which is exploited in the ‘‘geometrical’’
sampling approaches.

The conditions under which the orientational averaging may be
reduced from three angles to two angles are investigated later.

Most of the following discussion is restricted to the problem
of two-angle orientational averaging.

Existing Powder Averaging Methods

A large number of powder averaging methods have been
reported (20–30). In Ref. (25), many methods were compared.
In the following discussion, we focus on those methods which
were reported to give best results, as well as the commonly
used ‘‘step method.’’ The schemes evaluated in this article are
specified completely in Appendix 1.
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(i) The stepmethod: The simplest version of this approach
divides each of thea- andb-ranges (andg when appropriate)
into evenly spaced meshes. The weightswj

S are proportional to
sin bj

S.
(ii) The ZCW sampling schemes were originated by Za-

remba (26) and later modified by Conroy (27) and Wolfsberg
and coworkers (28). These schemes are commonly used in
solid-state NMR (3, 29). The orientations generated are solu-
tions of Diophantine equations, and provide rather uniform
distributions of orientations. The weightswj

S are uniform in the
ZCW method.

(iii) REPULSION(25). This elegant method takes the geo-
metrical approach to its logical conclusion. A very even dis-
tribution of orientations is obtained by first placingNSparticles
on the surface of a sphere, and then adjusting their positions
while minimizing a repulsive potential function between each
particle and its neighbors. The final stage of the optimization is
to adjust the weightswj

S according to the proximity of nearest
neighbors to each sampling point.

A weak point in the REPULSION scheme is that the opti-
mization of the weightswj

S is rather arbitrary. We demonstrate
below a new method for optimization of the weights.

GAUSSIAN SPHERICAL QUADRATURE

The basic idea behind aGaussian quadrature(31) is that any
function may be expanded as a sum of orthogonal basis func-
tions, usually polynomials of increasing orderL. If the expan-
sion is convergent, and the coefficients are very small beyond
a certain maximum rankLmax, then the function can be ap-
proximated within a certain error by a truncated series using
basis functions withL # Lmax. The average of the function is
estimated by choosing the samples and weights so that all
polynomials up to and including the orderLmax are integrated
as accurately as possible. Gaussian quadrature is extensively
used in numerical integration (31) and has been applied ex-
plicitly to some NMR problems (30, 32).

For a two-angle spherical average, the appropriate polyno-
mial functions are the spherical harmonics. This integration
method is called aGaussian spherical quadrature.Angle sets
have been constructed that provideexactintegration of spher-
ical harmonics for allL # Lmax with, presumably, the lowest
possible number of angles for a givenLmax (9–12).

The efficiency of this approach depends on the maximum
order required for an accurate estimate off ; the lower the value
of Lmax, the smallerN needs to be for exact integration.

Spherical Sampling Moments and Integration Errors

Consider first the general case requiring integration over all
three Euler anglesV 5 (a, b, g). The functionf (V) may be
expressed as an infinite sum of Wigner functionsDqq9

L (V):

f ~V ! 5 O
L50

` O
q,q952L

L

fLqq9Dqq9
L ~V ! , [8]

where

Dqq9
L ~a, b, g ! 5 exp$2iqa %dqq9 ~b !exp$2iq9g % , [9]

and dqq9(b) is a reduced Wigner function (16). The Wigner
functions are orthogonal, meaning

E
V ~3!

Dqq9
L ~V!~Dq0q-

L9 ~V!!*dV 5
8p2

2L 1 1
dLL9dqq0dq9q- , [10]

where the asterisk denotes complex conjugation anddmn is the
Kronecker delta function. The Wigner functions have the fol-
lowing integral overV(3):

E
V ~3!

Dqq9
L ~V !dV 5 8p2dL0dq0dq90. [11]

It follows that the integral off over V(3) evaluates to

f# 5 f000. [12]

Hence, the orientational average off corresponds to the expan-
sion coefficient ofD00

0 5 1. The purpose of powder averaging
may be reinterpreted as ‘‘projecting out’’ this component from
the infinite series.

In the following discussion, we assume that the series of coef-
ficients fLqq9 is convergent and falls rapidly to zero forL larger
than some threshold valueLmax

f . Roughly speaking, functions that
are ‘‘difficult’’ to integrate have large values ofLmax

f , and func-
tions which are ‘‘easy’’ to integrate have small values ofLmax

f .
The characteristics of a sampling scheme may be stated in

terms of itssampling moments,defined by

s Lqq9
S 5O

j51

NS

wj
SDqq9

L (Vj
S) . [13]

By definition, s000
S 5 1. From the orthogonality of the

Wigner functions, the estimated orientational average of the
function, obtained by a given sampling scheme, is equal to

f# S5O
L50

` O
q,q952L

L

fLqq9s Lqq9
S . [14]

The exact integral of the function is the first term in this series,
so the error generated by the sampling scheme is

eS 5 U O
L51

` O
q,q952L

L

fLqq9sLqq9
S U . [15]
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This represents theoverlapbetween the spherical moments of
the function fLqq9, and the sampling momentssLqq9

S , for all
ranksL $ 1. SincefLqq9 is very small forL . Lmax

f , a scheme
Sprovides an accurate estimate of the orientational average of
f if the sampling momentssLqq9

S are small for all ranksL in the
range 1# L # Lmax

f .

Rank Profiles

If the function depends only on the Euler anglesa andb, the
coefficientsfLqq9 are zero forq9 Þ 0, so that only the moments
fLq0 andsLq0

S are relevant. It is convenient to use the following
expressions for rms sampling moments and function coeffi-
cients:

sL
S5(

1

2L11 O
q52L

L

|sLq0
S |2)1/ 2 [16]

fL 5 S 1

2L 1 1 O
q52L

L

| fLq0|2D 1/ 2

. [17]

We call the plot ofsL
S againstL the rank-profileof a sampling

scheme, and the plot offL againstL the rank-profile of the
function to be averaged. These rank-profiles give a good qual-
itative indication of the performance of a sampling scheme. An
example of a rank-profile for a certain function is given in Fig.
1a. Rank profiles of two orientational sampling schemes are
given in Figs. 1b and c. The scheme given in Fig. 1b is
expected to be ‘‘poor’’ since there is significant overlap be-
tween the regions wherefL and sL

S are finite. The scheme in
Fig. 1c is expected to be ‘‘good’’ because the momentssL

S are
only significant in the region beyondL . Lmax

f .

The Lebedev Schemes

It is possible to design sampling schemes that integrateall
spherical harmonicsexactly up to and including a certain
orderLmax

S . These schemes may be applied to the two-angle
averaging problem because the Wigner functionDq0

L (a, b) is
proportional to the spherical harmonicYLq(b, a). Note here
the distinction betweenLmax

S , the maximum rank for which
all sampling moments vanish for a certain Gaussian spher-
ical quadraturescheme,andLmax

f , which is the highest rank
represented in the series expansion of thefunction to be
integrated.

The schemes of Lebedev (9–12) are constructed under oc-
tahedral symmetry (Oh). The Lebedev schemes have the prop-
erties

sL
S50 for 1 # L # Lmax

sL
S50 for L odd [18]

and are believed to perform this task in the minimum possible
number of angles, given approximately by

NLEB
S .

(Lmax
S 11)2

3
, Lmax

S odd. [19]

Lebedev schemes exist for a variety ofLmax
S values, the largest

reported so far being 53. The number of anglesNLEB
S for

various values ofLmax
S are given in Table 1. Since the octahe-

dral group contains inversion, the angles come in pairs (a2, b2)
5 (a1 1 p, p 2 b1). This inversion symmetry on the sphere
cancels identically the sampling momentssLq0

S for all odd
ranksL.

Figure 2 compares rank-profiles for some Lebedev sets with
two schemes based on the geometrical approach. Note the
completely flat profile of the Lebedev schemes out to the rank
L 5 Lmax, and the ‘‘sawtooth’’ appearance of the sampling
moments beyond that. The schemes ZCW and REPULSION
do not set any of the sampling moments exactly equal to zero,

FIG. 1. (a) Rms expansion coefficientsfL plotted against rank. The coef-
ficient f0 is the orientational averagef#. (b), (c) Rms sampling moments (sL

S) as
function of rank for two schemes, A and B. The valuess0

S 5 1 are not shown
in plots b and c. Scheme A would give a poor estimation off#, while scheme B
would be accurate.
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although the moments decrease gradually as the number of
angles grows.

There is no strict correspondence between these rank
profiles and the actual performance of an orientational sam-
pling scheme. The error depends, as described earlier, on the
rank profile for the functionf (V) as well as that of the
sampling scheme. For functions with convergent rank pro-
files, this implies that the error is largely determined by the
performance at high ranksL . Lmax

f , which has irregular
behavior, as may be seen from these plots. Furthermore, the
rank profiles obscure the phase relationship between the
momentssLq0

S with different q. Nevertheless, it is possible
to draw some qualitative conclusions:

1. The perfectly flat rank profile of the Lebedev schemes at
low L values allows these schemes to achieve extremely high
accuracy using a relatively low number of sampling points.
The Lebedev schemes are therefore greatly superior in cases
where high accuracy is required, providing of course that the
function is such thatLmax

f # 53.
2. The situation is less clear when the goal is to achieve

moderate accuracy of the powder average using a minimal
number of orientational samples. In this case, a compromise
must be achieved between performance at high and low ranks
L. The Lebedev schemes generally have high sampling mo-
ments just beyond the thresholdLmax

S , whereas the best ‘‘geo-
metrical’’ schemes achieve a rather smooth profile with a broad

TABLE 1
The Number of Orientations Required in Spherical Quadrature Schemes

Lmax
S N(LEB)a N(LEBhemi)b N(LEBoct)c N(SHREWD-STEPhemi)b N(SHREWD-STEPoct)c

11 50 25 10 66 18
15 86 43 16 120 36
17 110 55 19 153 45
19 146 73 22 190 50
23 194 97 31 276 72
29 302 151 46 435 120
41 590 295 85 861 231
47 770 385 109 1128 288
60 — — — 1891 496

100 — — — 5151 1326

a All spherical harmonics with rankL # Lmax
S are eliminated, and also all oddL spherical harmonics.

b All spherical harmonics are eliminated whose rankL is both even and less than or equal toLmax
S .

c All real parts of spherical harmonics are eliminated whose rankL is both even and less than or equal toLmax
S , and whoseq value is also even.

FIG. 2. Rms sampling momentssL
S for three powder methods at comparable numbers of angles. The moments0

S5 1 is not shown. The plots include Lebedev
schemes withLmax

S 5 15 (a), 19 (b), and 47 (c), ZCW schemes (d)–(f), and REPULSION sets (g)–(i). Note the magnified scale in the lower three plots.
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flat region at low ranks, peaking more gradually. In applica-
tions which do not demand extremely high accuracy, other
methods such as ZCW and REPULSION may therefore out-
perform the Lebedev schemes.

3. In many problems in solid-state NMR, the functionf(V)
possesses symmetry with respect to the orientationV. In these
cases, the Lebedev schemes gain a further advantage over most
of the ‘‘geometrical’’ schemes, because they are based upon
octahedral symmetry, and the number of sampling points is
readily reduced by large factors if the integrand possesses
symmetry. This is not generally true for the ZCW and REPUL-
SION schemes, which do not at the moment exploit orienta-
tional symmetry. In the next section, we discuss symmetry and
its consequences for numerical calculation of powder averages.

ORIENTATIONAL SYMMETRY

The orientational symmetry of typical functions of interest in
solid-state NMR is discussed in Appendix 2. The following
orientational symmetries may be identified.

Three-Angle Dependence

For these problems, the functionf displays in general no
symmetry whatsoever with respect to the orientational vari-
ablesV 5 (a, b, g). The most general cases in the NMR of
rotating solids fall into this category.

Two-Angle Dependence: Symmetry Group Ci

For these problems, either the function to be averaged is
independent of the Euler angleg, or else the averaging overg
may be done implicitly by a simple modification off. In
addition, there is a further symmetry in (a, b) corresponding to
inversion of points through the center of the sphere. These
properties may be expressed

f ~a, b, g ! 5 f ~a, b, 0!

f ~a, b, 0! 5 f ~a 1 p, p 2 b, 0! . [20]

Since inversion is the only symmetry element, the correspond-
ing point symmetry group has the Scho¨nflies symbolCi. This
symmetry leads to the following properties of the spherical
components off :

fLqq9 5 fLq0dq90

fLq0 5 0 for oddL . [21]

For problems of this type, a powder average may be computed
by integratingf over a hemisphere 0# a , 2p, 0 # b # p/2.

For problems withCi symmetry, the relevant orientational
sampling momentssL

S(Ci) are given by Eq. [16] withL taking
only even values.

All cases in the NMR of static solids, and many problems in
the NMR of rotating solids, displayCi symmetry. As discussed

in the appendix, the NMR signal from a rotating solid hasCi

symmetry if (i) the eigenstates of the spin Hamiltonian do not
change as the sample rotates, and (ii) the observable coher-
ences are prepared with orientation-independent phases. The
spinning sideband patterns generated by ‘‘inhomogeneous’’
interactions (in the dynamic sense of Maricq and Waugh (33))
displayCi symmetry with respect to molecular orientation.

Recently, we have proved that an important class of dynam-
ically ‘‘homogeneous’’ problems also hasCi symmetry. This
includes the NMR spectra of arbitrary coupled spin systems in
rotating powdered solids, in the absence of radio-frequency
fields, and with uniform preparation of the spin coherences.
The conditions leading toCi symmetry in dynamically ‘‘ho-
mogeneous’’ problems are discussed in a following paper (34).

Two-Angle Dependence: Symmetry Group D2h

These problems display two additional properties in the
function f :

f ~p 1 a, b, 0! 5 f ~a, b, 0!

f ~2a, b, 0! 5 f ~a, b, 0! . [22]

On the unit sphere, these correspond to a twofold rotation axis
alongz and a reflection planexz. Combined with the inversion
operation, the function conforms to symmetry groupD2h. The
corresponding properties of the spherical coefficients are

fLqq9 5 fLq0dq90

fLq0 5 0 for oddL

fLq0 5 0 for oddq

fLq0 5 f *Lq0. [23]

For problems of typeD2h, it is only necessary to integrate over
one octant of the sphere: 0# a # p/2, 0# b # p/2. This case
is common if there is only one anisotropic spin interaction
involved and the orientational scheme exploits the principal
axis system of that interaction.D2h symmetry is also encoun-
tered if there are several interactions, all sharing the same
principal axis frame.

For problems withD2h symmetry, the relevant sampling
moments may be defined through

sL
S(D2h)5(

1

L11 O
q52L,
q even

L

|Re$sLq0
S }|2!1/ 2, L even. [24]

For static solids in high field,the existence of a single
anisotropic interaction, or several interactions with common
reference frames, is sufficient to establishD2h symmetry (35).

For rotating solids in high field,one needs in general (i) a
single anisotropic interaction, or several interactions with com-
mon principal axis frames; (ii) time-independent eigenstates of
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the spin Hamiltonian; (iii) observable coherences excited with
orientation-independent phases. An important example in ro-
tating solids is the generation of spinning sidebands by the
chemical shift anisotropy interaction of isolated spin sites, as
discussed later.

Other Forms of Symmetry

Other forms of orientational symmetry appear to be rare. For
example, we are aware of no cases in which the function is
independent ofg, but for which the equivalence off (a, b) and
f (p 1 a, p 2 b) cannot be established. Cases in whichf (a, b,
0) is equal tof (p 1 a, b, 0) but not tof (2a, b, 0) appear to
be equally rare.

EXPLOITATION OF SYMMETRY

Two-Angle Dependence

Orientational symmetry has a major effect on the computa-
tion of powder averages. The Lebedev schemes belong to the
Oh symmetry group, which contains bothCi andD2h as sub-
groups. If an angle pair (a, b) is a member of a Lebedev set,
then either the seven angle pairs

~p 1 a, b !; ~2a, b !; ~p 2 a, b !; ~a, p 2 b ! ;

~p 1 a, p 2 b !; ~2a, p 2 b !; ~p 2 a, p 2 b ! [25]

are also included in the Lebedev set, or else one of them
coincideswith (a, b), within modulo 2p. Clearly, computation
may be restricted to those pairs which are not related by the
symmetry operations of the appropriate group. These symme-
try reductions give the Lebedev sets a decisive advantage for
problems of typesCi andD2h.

For problems of typeCi, the Lebedev angle sets may be
reduced by a factor of 2. The angle pairs in the reduced set may
be constrained to the upper hemisphere of the sphere. For this
reason, we refer to this type of Lebedev set as ahemispherical
Lebedevset, denoted LEBhemiN, whereN is the number of
orientations in the set.

For problems of typeD2h, the Lebedev sets may be reduced
by a factor between 5 and 8. The angles may be constrained to
a single octant of the sphere. Such sets are called hereoctant
Lebedevsets and denoted LEBoctN.

The number of angles in the reduced Lebedev sets are listed
in Table 1, and a scheme is given explicitly in Table 2.

It is also possible to construct ‘‘geometrical’’ schemes with
symmetrical distributions of sampling points. Two examples
are the step method and SOPHE (23). These angle sets may
also be reduced by large factors when applied to problems of
type Ci andD2h.

Many schemes, such as the current versions of ZCW and
REPULSION, cannot be reduced underCi or D2h symmetry.
Nevertheless, the symmetry of the integrand may still be ex-
ploited by distributing the points over only one half of the

sphere (20, 29) (in the case ofCi symmetry), or over only one
octant of the sphere (in the case ofD2h symmetry). This leads
to a higher density of sampling points, which is expected to
improve the accuracy of the integration. Our implementation of
this for ZCW is described in Appendix 1. In practice, we often
found the improvement in performance rather marginal. How-
ever, it is possible to improve performance further by optimiz-
ing the weightswj

S, as described in the next section. REPUL-
SION may also be adapted to the symmetry of the integrand by
building symmetry constraints into the pseudopotential used in
optimizing the angle sets. For example, each point could be
associated with symmetry-related ‘‘images’’ (25). At the mo-
ment, it is not known whether symmetrized REPULSION sets
are competitive with the Lebedev schemes.

Three-Angle Dependence

In the NMR of rotating solids, the function to be evaluated
often has no symmetry at all in the orientational variables. A
three-angle average must be computed. The Lebedev sets apply
only to two-angle averaging and cannot be used directly. This

TABLE 2
Orientations and Weights for LEBoct31

a b w

0.00000000 0.00000000 0.003564681
0.00000000 20.2288199 0.020207384
0.00000000 45.0000000 0.022867624
0.00000000 69.7711801 0.020207384
0.00000000 90.0000000 0.003564681
7.52995108 82.5342479 0.032854216

10.7708560 58.3237741 0.044241991
16.8498911 33.2761302 0.044241991
17.5875412 73.1871458 0.041265902
20.2288199 90.0000000 0.020207384
25.0816830 47.8327264 0.044869633
29.7677350 63.5962810 0.044150172
32.1331436 80.8487219 0.044241991
45.0000000 10.5884838 0.032854216
45.0000000 24.1455738 0.041265902
45.0000000 38.9683735 0.044150172
45.0000000 54.7356103 0.044587065
45.0000000 71.6876561 0.044869633
45.0000000 90.0000000 0.022867624
57.8668563 80.8487219 0.044241991
60.2322650 63.5962810 0.044150172
64.9183170 47.8327264 0.044869633
69.7711801 90.0000000 0.020207384
72.4124588 73.1871458 0.041265902
73.1501089 33.2761302 0.044241991
79.2291440 58.3237741 0.044241991
82.4700489 82.5342479 0.032854216
90.0000000 20.2288199 0.020207384
90.0000000 45.0000000 0.022867624
90.0000000 69.7711801 0.020207384
90.0000000 90.0000000 0.003564681

Note.Orientations in degrees.
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also applies to many other schemes treated here, such as
REPULSION.

Any two-angle scheme may be extended to the three-angle
case by handling theg-angle separately. For example, all
Dqq9

L (V) for L # Lmax may be integrated exactly by combining
a Lebedev method with a (Lmax 1 1)-fold step in theg-range.
However, this requires a large number of angles and is prob-
ably far from optimal.

The Lebedev sets may presumably be generalized to produce
accurate quadratures of the three-angle Wigner functionsDqq9

L (V)
using far fewer orientations, but no such sets have appeared, to the
authors’ knowledge. The problem of finding better solutions in the
three-angle case is currently under investigation.

SHREWD SCHEMES—OPTIMIZATION OF WEIGHTS

As shown in what follows, the Lebedev schemes appear to
be superior to any other method for integration of functions
with Ci andD2h symmetry, in the case thatLmax

f is less than 53.
However, there are some remaining problems with the Leb-
edev schemes:

1. No Lebedev schemes currently exist forLmax larger
than 53.

2. The Lebedev rank profiles often have undesirable behav-
ior beyondLmax

S . This leads to nonoptimal performance when
only moderate accuracy is required.

For these reasons, we have attempted to combine the ‘‘geo-
metrical’’ and ‘‘mathematical’’ approaches: The distribution of
orientations is based on geometrical arguments, but the weights
are provided by optimizing a spherical rank profile. We call
these schemesSHREWD(Spherical Harmonic Reduction or
Elimination by a Weighted Distribution).

The SHREWD strategy will first be stated in its most general
form. Consider an arbitrary set ofNS orientationsVj 5 (aj, bj,
gj). We wish to integrate exactly a set of target functions
Dqq9

L (V), whereL 5 0, 1, . . . ,Lmax, and the indicesq andq9
take all possible values. The optimum set of weights {wj

S} may
be deduced by solving the linear system of equations

M D
S wS5starget, [26]

or, in explicit matrix notation,

1
D00

0 ~V1! D00
0 ~V2! · · · D00

0 ~VNS)
···

···
···

···
Dqq9

L (V1) Dqq9
L (V2) · · · Dqq9

L (VNS)
···

···
···

···
2 1

w1
S

w2
S

···
wNS

S 251
1
0
···
0
2 , [27]

wherewS andstargetare vectors having weights and sampling
moments as elements, respectively. Each row in the matrixMD

S

represent a certain combination ofL, q, andq9, and the col-
umns correspond to the orientationVj. The last row in the
matrix MD

S corresponds toL 5 q 5 q9 5 Lmax.

Since the Wigner functions are complex in general, the
number of simultaneous equationsNeqsrepresented in Eq. [27]
is almost twice the number of rows inMD

S.
In principle, solving the linear system allows one to ‘‘de-

stroy’’ all Wigner functions out to an arbitrary maximum rank
Lmax. However, the number of angles required to do this is
prohibitive in practical cases.

In the following examples, we greatly reduce the dimension
of the matrix MD

S by taking the special case of two-angle
averaging of a real function withCi andD2h symmetries. In the
case ofCi symmetry, one only needs to include rows withL
even,q9 5 0, andq $ 0. This reduces the number of simul-
taneous equations to

Neqs~Ci ! 5
1

2
Lmax~Lmax 1 3! 1 1 . [28]

For D2h symmetry, the number of equations is reduced further
by considering only the real parts of Wigner functions and even
q-components:

Neqs~D2h! 5
1

8
~Lmax 1 4!~Lmax 1 2! . [29]

The columns (rows) ofM D
S are in general linearly in-

dependent. Such a system of linear equations inNS un-
knowns conforms to one of three possibilities: (i) The num-
ber of unknown weights exactly matches the number of
equations:NS 5 Neqs. This provides a set of weights which
ensure that all relevant sampling moments exactly vanish
for 0 , L # Lmax. (ii) The system isoverdetermined,that is,
NS , Neqs. We return to this case later. (iii) The system is
underdetermined; NS . Neqs. This case is of no practical
interest.

Exact Solutions

We have solved systems of equations using orientations
generated by the ZCW algorithm. The solutions withNeqs5
NS have characteristics similar to those of the Lebedev
schemes. However, these sets are approximately three times
larger than the Lebedev sets, so these are not of great
interest.

The preceding approach may also be applied to the step
method. This can be implemented comparatively easily and has
the advantage of beingopen-ended,allowing straightforward
construction of schemes with arbitraryLmax

S . We demonstrate
the method over a hemisphere and octant.

These SHREWD-step schemes are constructed as follows:
Select aneven Lmax and generate orientations according to

b j 5
pj

2Nb

, 1 # j # Nb , [30]
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whereNb 5 1
2
Lmax 1 1 and

a i 5 5
2pi

Na

, 1 # i # Na for hemisphere

p

4Na

~2i 1 1!, 0 # i # Na 2 1 for octant
, [31]

with Na given by

Na 5 H Lmax 1 1 for hemisphere

ceilH1

4
~Lmax 1 1!J for octant

. [32]

The function ceil is defined such that for an argumentx, it
returns the smallest integer larger than or equal tox.

To each orientation {ai, bj}, associate a weightwj, given as
the solution of the following system of equations:

1
P0~cosb1! P0~cosb2! · · · P0~cosbNb

!
P2~cosb1! P2~cosb2! · · · P2~cosbNb

!
···

···
···

···
PL max~cosb1! PL max~cosb2! · · · PL max~cosbNb

!
21

w1

w2···
wNb

25 1
1
0
···
0
2 ,

[33]

where PL(x) is the Legendre polynomial of orderL. This
variant of the step method has weights which are not equal to
sinbj, but which are adjusted to provide the accurate quadra-
ture. These schemes are approximately 2.5 times less efficient
than the Lebedev schemes. However, the weights are readily
calculated out to arbitrarily high ranks, whereas the Lebedev
schemes are at present only available up toLmax

S 5 53. They
are therefore of interest when integrating ‘‘difficult’’ functions.
In the calculations discussed later, we use a SHREWD-STEP
scheme withLmax

S 5 100 to provide highly accurate ‘‘refer-
ence’’ calculations, with which other methods may be com-
pared. Other schemes have been reported which provide accu-
rate spherical quadrature out to arbitrarily high ranks, while
being only 1.5 times less efficient than the Lebedev schemes
(13, 14).

We have also developed schemes which eliminate increas-
ingly high ranks iteratively, in a purely computational exten-
sion of experiments using rotations around multiple axes
(32, 36–38). So far, this approach has not generated any
schemes which are competitive with the Lebedev and
SHREWD approaches.

Least-Squares Optimization

We return now to the case when the system in Eq. [27] is
overdetermined, so that no exact solution is available. It is still
possible to solve for theleast-squaressolution (31, 39) to the
exact vectorstarget. This permits construction of schemes with
relatively flat rank-profiles over larger ranges ofLmax. Best
results are obtained by incorporating a function which deter-

mines the relative importance given to satisfying each individ-
ual equation. For example, it is very important to keep the
normalization conditions000

S 5 1 fulfilled. Furthermore, it is
more desirable to keepsLq0

S small for low values ofL while the
values for very largeL may be allowed more freedom. This is
taken into account by obtaining aweighted least-squares(39)
solution according to

GM D
S wS5Gstarget, [34]

whereG is a diagonal matrix whose elements indicate the
relative importance of satisfying each of the simultaneous
equations. In practice, the matrix elements ofG are chosen
by assuming that the spherical coefficientsfLq0 of the func-
tion to be integrated decay sharply afterLmax

f , so that sam-
pling momentssLq0

S are less important forL . Lmax
f . In our

evaluations, we assumed a Gaussian curve with respect toL
and q, according to

G ~0, 0! 5 106

G ~L, q! 5 exp$2~L/LG!2 2 ~q/qG!2%, L . 0 , [35]

whereLG andqG determine the width of the Gaussian function.
The large value ofG(0, 0) ensures that the weights remain
almost normalized during the least-squares optimization. Exact
normalization of the weights is imposed afterwards.

The weighted least-squares solution of Eq. [34] is given by

wS5(GM D
S )1 Gstarget, [36]

where the cross indicates the pseudo-inverse (39).
Best results are obtained by adjustingLG andqG according

to the number of anglesNS. It is always possible to find weights
which perform better than the original ones. We have opti-
mized a number of schemes under different symmetries. We
use SHREWD as prefix for the sets with optimized weights.
For example, SHREWD-ZCWoct89 is the scheme obtained by
refining the weights of the ZCW scheme over an octant using
89 angles. The result of such an optimization is given in Fig. 3.
Comparison of the rank-profiles show a markedly improved
performance for SHREWD-ZCWoct89 at essentially all ranks
up to.40. After this value ofL, the sampling moments of the
two schemes are almost identical. The parameters used in this
optimization wereLG 5 qG 5 30, andL 5 30 was the highest
rank included in the system of equations.

The optimization process outlined here is successful for
minimizing sampling moments that are already comparatively
small. However, large ‘‘peaks’’ appearing in the profiles (com-
pare Fig. 2) cannot in general be dealt with. Significant im-
proved performance is only to be expected when the ‘‘peak’’
appears at relatively high values ofL.

SHREWD weighting cannot perform miracles and transform
a poor sampling scheme into a good one. However, it is
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capable of improving the performance of a scheme which is
already rather good, and gives much faster convergence at a
large number of angles. In principle it is also possible to
optimize an angle set by allowing the orientationsVj

S to vary,
while searching for the set of orientations giving the flattest
rank-profile. These sets may then be refined further using
least-squares optimized weights. This procedure corresponds
to a REPULSION-type approach, but with the flatness of the
rank profile playing the role of the electrostatic potential.

EVALUATION OF AVERAGING PERFORMANCE

In this section we evaluate the averaging properties of the
Lebedev schemes and compare them with some of the most
popular geometrical methods. Our test case is the calculation of
spinning sideband patterns generated by a single chemical shift
anisotropy interaction in MAS NMR. If the principal axis
system of the CSA interaction is used, the calculation conforms
to D2h symmetry, allowing integration over an octant of the
spherical surface. If an arbitrary molecule-fixed axis frame is
used, hemispherical schemes appropriate toCi symmetry are
relevant.

Calculation of MAS Sidebands

The calculation of MAS sideband patterns was performed by
Herzfeld and Berger (18) using truncated Bessel function ex-
pansions. The following procedure uses instead a direct time-
domain calculation of the form discussed in Ref. (40). In order
to establish an unambiguous notation, our approach to the
problem is now formulated briefly.

Consider a rotating powder containing a set of isolated
spin-1/2 sites experiencing a chemical shift anisotropy inter-
action. The time-dependent Hamiltonian for a certain molecu-
lar orientation is

H ~t, VMR ! 5 vCS~t, VMR !I z, [37]

where the periodically modulated chemical shift offset fre-
quency may be written as a Fourier series

vCS~t, VMR ! 5 O
m522

2

vCS
~m! ~VMR !exp$imvr t % , [38]

andvr is the rotational frequency of the sample. The Fourier
componentsvCS

(m)(VMR) are given by

vCS
~m!~VMR! 5 visodm0 1 O

m9,m0522

2

@A2m0
CSA#PDm0m9

2 ~VPM!

3 Dm9m
2 ~VMR!dm0

2 ~bRL!exp$2imaRL
0 t%, [39]

whereviso is the isotropic chemical shift frequency. The angle
aRL

0 describes the sample position ast 5 0 and is immaterial
for the present discussion.bRL is the angle between the rotation
axis and the field, equal to arctan=2 for exact magic angle
spinning. The numbers [A2m

CSA]P are components of the CSA
tensor in its principal axis system:

@A2m
CSA#P 5 5

vaniso if m 5 0
0 if m 5 61

2
1

Î6
hvaniso if m 5 62

. [40]

The anisotropyvanisoand asymmetry parameterh characterize
the CSA tensor. They are calculated from

vaniso5 v0~dzz2 d iso! , [41]

h 5
dyy 2 dxx

dzz2 d iso
, [42]

wherev0 5 2gB0 is the Larmor frequency of the nucleus and
diso is the mean of the principal values of the tensordiso 5 (dxx

1 dyy 1 dzz)/3. The principal values are expressed in deshield-
ing units and ordered according to |dzz2 diso| $ |dxx 2 diso| $
|dyy 2 diso|.

Suppose that the transverse magnetization components are
prepared with uniform phasef 5 0 at time t 5 0. The
time-signal generated from the Hamiltonian in Eq. [37] can be
expressed as a product of two factors

s~t, VMR ! 5 exp$ivCS
~0! t %exp$iFCS~t, 0; VMR !% . [43]

The periodic phaseFCS(t, 0; VMR) is given by

FCS~t, 0; VMR ! 5 E
0

t

vCS~VMR , t9 !dt9 [44]

FIG. 3. Rank-profiles for ZCWoct89 and SHREWD-ZCWoct89, where
the latter is obtained by least-square optimization of the weights of the
former, includingL 5 30 as highest rank in the system of equations andLG

5 qG 5 30.
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and can be expressed analytically as

FCS~t, 0;VMR! 5 O
mÞ0

vCS
~m!~VMR! Hexp~imvr t! 2 1

imvr
J . [45]

The numerical calculation of the MAS spectrum proceeds as
follows. The rotational periodtr 5 2p/vr is divided into n
segments of equal lengtht 5 tr/n, and the periodic function
exp{iFCS(t, 0; VMR)} is evaluated at each time pointt 5 pt,
with p 5 0, 1, . . . ,n 2 1. Discrete Fourier transformation of
the set of points gives a manifold of orientation-dependent
sideband amplitudes

a~k ! ~VMR ! 5 n21 O
p50

n21

exp$i @FCS~t, 0; VMR ! 2 2ppk/n#%,

2
n

2
1 1 # k #

n

2
, [46]

wherek denotes the sideband index.
The numbern should be even, and when it is equal to an

integer power of 2, a fast Fourier transform (31) can be used
for optimal computational efficiency. The frequency span of
the calculation is given bynvr. The numbern should be chosen
to greatly exceed the number of sidebands in the spectrum. The
spectrum consists of a superposition of peaks with amplitudes
a(k)(VMR) at frequenciesv(k )5vCS

(0)1kvr (33, 40). For exact
magic-angle spinning (bRL 5 arctan=2), the Fourier compo-
nent vCS

(0) is equal toviso and the frequencies are orientation-
independent. Sidebands for different orientations are exactly
superimposed.

The powder averaged sideband amplitude a#(k) is given by

a# ~k ! 5 ^a~k ! ~VMR !&VMR , [47]

where^. . .&VMR
represents an average overVMR. As shown in

Ref. (17), the integration overg may be taken into account
simply by taking the square modulus of the amplitude. The
calculation may therefore be reduced to a two-angle integral:

a# ~k ! 5 E
V ~2!

|a~k ! ~aMR , bMR , 0!|2dV . [48]

The squared sideband amplitudes are the target functions for
orientational averaging:f (k ) (V )5|a(k ) (VMR)|2. Integration
is performed by a weighted summation over sets of (aMR, bMR)
pairs, as described earlier.

We have verified that the spread ofLmax among the various
sideband orders is rather uniform in typical cases. The rms
rank-profilesf L

(k )5|a(k ) |L
2 for a set of sideband indicesk are

plotted againstL in Fig. 4.

Calculations in the Principal Axis System

Calculation of MAS spinning sideband patterns is performed
most efficiently by choosing the molecular reference frameM
to coincide with the principal axis systemP of the CSA
interaction. This implies usingVPM 5 (0, 0, 0) in Eq. [39]. The
g-averaged sideband amplitudes |a(k ) (aMR, bMR)|2 possess
D2h symmetry with respect to the angles (aMR, bMR), allowing
the use of greatly reduced Lebedev schemes.

We have evaluated different averaging schemes by first
calculating a ‘‘reference’’ sideband pattern, using a SHREWD-
STEPoct scheme withLmax

S 5 100 requiring 1326 orientations.
This calculation gave essentially identical results to a conven-
tional step method calculation using 106 orientations. In all
cases,n was chosen to be much larger than the number of
significant sidebands, and it was verified that further increase
in n did not significantly affect the sideband amplitudes. The
reference spectrum may therefore be considered to be exact.

The powder performance of each scheme was evaluated by
calculating the maximum deviation in sideband amplitudes
a#S

(k), relative to the reference spectruma# ref
(k) over the entire set of

sidebands:

emax
S 5max$|a# S

(k )2a#ref
~k ! |%k, 2

n

2
1 1 # k #

n

2
, [49]

where a#S
(k) is the integrated sideband amplitude when using

schemeS. Since the largest sidebands in the spectrum tend to
have the largest errors, this error function has the advantage of
being independent of the number of evaluated sidebands, as
long as the calculation has sufficient bandwidthn. Other eval-
uation criteria have also been tried. The conclusions reached
about relative integration properties for different schemes are
essentially independent of the choice of evaluation method, as
long as systematic errors are avoided.

Plots ofemax
S are shown in Fig. 5 for different shift anisotro-

FIG. 4. (a) Rank profiles of MAS sideband functionsf L
(k), 22 # k # 2, for

the case of a CSA tensor withh 5 0.5 andvaniso/vr 5 5. The estimatedLmax

is approximately the same for all sidebands. Accurate orientational averaging
requires schemes with small sampling moments below rank.22. Because of
D2h symmetry, the odd rank components are all zero and are not shown.
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pies and asymmetry parameters. The following schemes are
evaluated: Lebedev over octant (LEBoct), REPULSION
(REP), ZCW over full sphere (ZCW) and octant (ZCWoct),
and step-method over octant (STEPoct). In Fig. 5a, the case
vaniso/vr 5 5 andh 5 0.3 is investigated. The Lebedev method
converges very rapidly and reduces the error below 0.0025
using a scheme withLmax

S 5 17, requiring only 19 angles. The
error is reduced toemax

S . 1025 using only 31 orientations,
corresponding to a scheme withLmax

S 5 23. None of the other
schemes reach this accuracy with fewer than 1000 orientations.
In this regime of shift anisotropy, the REPULSION method
outperforms ZCW. Orientational averaging using randomly
chosen points on the sphere requires around 20,000 orienta-
tions to reduce the error to below;0.0025. The computational
speeds for the best (Lebedev) and worst (random) methods
differ by a factor of 1000.

The Lebedev schemes also outperform the other approaches
in the more demanding case in Fig. 5b, in which the ratio
vaniso/vr is increased to 8, keeping the asymmetry parameter
constant ath 5 0.3. A markedly decreased performance is
noted for the REPULSION schemes, which is even more
pronounced in Fig. 5c, where the following CSA parameters
are used:vaniso/vr 5 12 andh 5 0.7. It should be noted,
however, that the REPULSION sets are not adapted to the
symmetry of the function.

In all three cases depicted in Fig. 5, the Lebedev octant sets
are clearly the best choice for integration. The Lebedev sets

only experience significant competition in more demanding
cases such as in Fig. 5c, where the ZCWoct and STEPoct
schemes start to gain ground slightly.

The case in Fig. 5b is examined more closely in Fig. 6. Here
the computed sideband amplitudes for different schemes are
compared with an exact reference spectrum. In Figs. 6a, d, and
g, all schemes involve around 20 angles. None of these have
converged. LEBoct31 is compared with ZCWoct34 and STEP-
oct36 in Figs. 6b, e, and h. There is almost no visual difference
between the spectra obtained from the Lebedev set and the
reference spectrum. All of the other powder methods show
strong deviations. In Figs. 6c, f, and i, these schemes are
compared for around 85 angles. The STEPoct scheme has now
attained near-convergence, while the ZCWoct method still
shows deviations.

The comparison in Fig. 5 also reveals an interesting distinc-
tion between ZCW schemes in which sampling points are
distributed over a full sphere, and those in which the points are
restricted to an octant. Generally speaking, we have found the
octant version to be better in cases withh . 0.5, while the full
sphere version is often better forh , 0.5, and isalways
superior when a very large number of orientations (NS . 400)
is used to obtain high accuracy.

It is perhaps surprising that ZCWoct is not always superior
to ZCW, given that the density of sampling points is much
higher in the octant case. It seems that the accuracy of numer-
ical integration depends on subtle details of the sampling and

FIG. 5. Powder averaging performance for MAS sideband amplitudes from a CSA tensor in its principal axis system. Five powder approaches were used:
ZCW and REPULSION over full sphere, denoted ZCW and REP, respectively, and octant versions of ZCW (ZCWoct), Lebedev (LEBoct), and step method
(STEPoct). Left diagrams: Maximum sideband erroremax (Eq. [49]) for each scheme plotted against number of orientations. Right diagrams: MAS spectrum
(amplitudes). (a)vaniso/vr 5 5 andh 5 0.3. (b)vaniso/vr 5 8 andh 5 0.3. (c)vaniso/vr 5 12 andh 5 0.7.
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cannot be quantified by a simple criterion such as sampling
point density. The poor performance of octant versions of
ZCW at large numberNS may be related to the fact that ZCW
was originally developed for integration over rectangular
bounds in two dimensions. The boundary conditions in octant
integration on the surface of a sphere are quite different.

The improvement of performance of ZCWoct and REPUL-
SION through SHREWD weighting is illustrated in Fig. 7. The
simulation parameters of Fig. 5a were used (note the magnified

scale). The superiority of SHREWD-ZCWoct over ZCWoct is
obvious. Different versions of REPULSION are also con-
trasted: REP uses weights as described in Ref. (25). The
schemes SHREWD-REP were obtained from an least-squares
optimization, as described earlier. Although SHREWD weight-
ing provides some improvement, all of these methods are still
clearly outperformed by the Lebedev schemes. Presumably, the
performance of REPULSION would be further enhanced by
adapting it to the symmetry of the function, as suggested in
Ref. (25).

Calculations in an Arbitrary Molecular Frame

It is also possible to calculate MAS sideband amplitudes
using an arbitrary molecular frameM, instead of the principal
axis frameP. The calculation then involves an extraP 3 M
transformation, as described in Eq. [39]. The orientational
variable in this case isVMR 5 (aMR, bMR, gMR).

For an isolated spin-1/2 site, there is no advantage in using
an arbitrary frameM instead of the principal axis frameP. The
calculation is introduced here merely as an example withCi

symmetry of the orientational function.
The g-averaged sideband amplitudes |a(k ) (aMR, bMR)|2

have the symmetry property (17, 41)

|a~k! ~aMR, bMR, 0!|2 5 |a~k! ~aMR 1 p, p 2 bMR, 0!|2. [50]

This allows the integration to be performed over only one

FIG. 6. Calculated MAS sideband amplitudes for some of the schemes used in Fig. 5b, compared with an exact reference spectrum (ref). For clarity, the
sideband amplitudes are joined by continuous lines (for the evaluated scheme) and dotted lines (for the exact spectrum). (a) Lebedev over octant with (a) 22,
(b) 31, and (c) 85 orientations; ZCW over octant for (d) 21, (e) 34, and (f) 89 orientations; and STEPoct with (g) 25, (h) 36, and (i) 81 orientations.

FIG. 7. Demonstration of improved powder schemes by optimization of the
weights for REPULSION and ZCWoct. The parameters are same as in Fig. 5a, but
the scale is enlarged. The schemes are REPULSION with weights as described in
Ref. (25), REPULSION with least-squares optimized weights (SHREWD-REP),
and ZCWoct with least-squares optimized weights (SHREWD-ZCWoct). The
performance of the Lebedev octant schemes is also shown.
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hemisphere 0# aMR , 2p, 0 # bMR # p/2. Integration may
be performed using ‘‘hemispheric’’ Lebedev sets which have
exactly half the number of angles of the full Lebedev sets.

Consider a calculation of the powder averaged sideband
amplitudea# (k) using a certain sampling scheme for orientations
VMR. In general the result of this calculation depends on the
relative orientationVPM of the principal axis frame and the
molecular reference frame, and may therefore be denoted

a# S
(k ) (VPM) 5 O

j

wj
S|a~k ! ~VPM, VMR

j !|2. [51]

To avoid systematic bias due to a particular choice of trans-
formationVPM, we follow Bak and Nielsen (25) and repeat the
calculation for a large number of transformationsVPM. In
practice, we used 100 randomly chosen orientations. The error
criterion used for evaluation of the schemes was

emax
S 5max$|a# S

(k ) (VPM
l ! 2 a# ref

~k ! |} k,l ,

2
n

2
1 1 # k #

n

2
, 1 # l # 100 , [52]

that is, the largest absolute error in any spinning sideband
amplitude, scanned over all choices of reference frameM. The
reference amplitudesa# ref

(k) were obtained from converged cal-
culations using the principal axis frame. The criterionemax

S is
roughly independent of the number of sidebands involved in

the calculation and also of the ensemble of molecular frames
M, once a sufficient number is chosen.

The Lebedev sets again give fastest convergence. In Fig. 8a
the CSA parameters arevaniso/vr 5 3 and h 5 0.8. All
methods converge to approximately 1% accuracy within 100
angles. However, the Lebedev sets converge faster than any
other scheme. The next best in this regime is REPULSION.

In Fig. 8b a more difficult case is investigated:vaniso/vr 5
8 andh 5 0.5. Again, the Lebedev sets converge faster than
any other method, although the ZCW hemispheric sets now
offers significant competition. The ZCW and REPULSION
full-sphere sets have very similar behavior.

PRACTICAL RECOMMENDATIONS

The subject of orientational averaging in solid-state NMR is
very complex. The best strategy to use depends on (i) the
symmetry of the NMR response with respect to orientation,
and (ii) whether only theamplitudesof the peaks are orienta-
tion-dependent, or both the amplitudes and the peakfrequen-
ciesare orientation-dependent.

Orientation-Dependent Peak Amplitudes Only

At the moment, Gaussian spherical quadratures appear to be
most useful for cases where the peak amplitudes are orienta-
tion-dependent, but the peak frequencies are not. This includes
many dynamically inhomogeneous problems, such as the spec-
trum generated by isolated spins-1/2 under exact magic-angle

FIG. 8. Powder averaging performance for MAS sideband amplitudes using a CSA tensor in a set of 100 arbitrary molecular reference frames. Five powder
approaches were used: ZCW and REPULSION over full sphere (ZCW) and (REP), respectively, and hemispheric versions of ZCW (ZCWhemi), Lebedev
schemes (LEBhemi), and step method (STEPhemi). Left diagrams: Maximum sideband errorsemax (Eq. [52]) for each scheme plotted against number of
orientations. Right diagrams: MAS spectrum (amplitudes). (a)vaniso/vr 5 3 andh 5 0.8. (b)vaniso/vr 5 8 andh 5 0.5.
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spinning, as evaluated earlier. Another example is the evolu-
tion of multiple-quantum coherences under heteronuclear local
fields, as in the recently developed experiments for determin-
ing molecular torsional angles (4–7).

For such applications, it is useful to have some insight into
the maximum spherical rankLmax

f of the function to be aver-
aged. We have evaluated rank profiles for a variety of asym-
metry parametersh and ratios in the range 1# |vaniso/vr| # 12
for the case of exact magic-angle-spinning of isolated spins-
1/2. In Fig. 9, plots ofLmax

f against the ration |vaniso/vr| for
three different asymmetry parameters are shown.Lmax

f grows
as both |vaniso/vr| andh increase. For a fixedh, Lmax

f depends
almost linearly on |vaniso/vr|.

As discussed in Ref. (42), vaniso is usually most reliably
determined from experiments using 3& |vaniso/vr| & 5. By
comparing with Table 1, we see that in this range, calculations
using LEBoct schemes requiresat most31 orientations for
highly accurate sideband amplitudes (assumingD2h symme-
try). On the other hand, for rotating solids, the most reliable
determinations of the asymmetry parameter are generally made
in the slow-spinning region of |vaniso/vr| * 10 (42). This is in
general outside the range of applicability of the Lebedev
schemes, and here SHREWD schemes may be used instead.

Figure 9 may also be used in more general situations, as long
as only the peak amplitudes depend on orientation, and not the
peak frequencies. The value ofLmax

f may be estimated by
replacing vaniso with vint, the size of the interaction under
study. If several interactions are involved, a very conservative
estimate ofLmax

f is obtained by using the sum of all |vint|. In
many cases, the convergence is much faster than predicted,
especially if the calculation is made in the PAS.

For problems of this type, the function to be averaged
always display orientational symmetry, so the reduced hemi-
spherical or octant Lebedev sets should be used, as appropriate.

Orientation-Dependent Peak Amplitudes and Frequencies

In most computationally intensive problems, both the peak
amplitudes and peak frequenciesv(k) are orientation-depen-
dent. Our limited experience with these more general cases

suggests that the rank profiles of the amplitudesa(k) and side-
band frequenciesv(k) both cut off at about the same rank as
indicated in Fig. 9, if the sum of sizes of all interactionsvint is
used. However, in general, the rank profile of the totalspec-
trum S(v) often displays a much slower convergence. This is
because the amplitude of a certain point in thespectrummay be
a very sharp function in orientational space, even when the
frequency of the resonancepeakshas a smooth orientation
dependence. As a result, the maximum rank required in the
Lebedev schemes is usually much larger than expected from
Fig. 9. In these cases, it seems that the Lebedev schemes
cannot reduce the number of orientations required for lineshape
simulations. Preliminary tests indicate that the Lebedev
schemes give similar performance to the ZCW and REPUL-
SION methods for a comparable number of angles, while in
some cases, the Lebedev sets are worse. The Lebedev schemes
do, however, perform best if the required frequency resolution
is low, or equivalently, at relatively short times in time-domain
simulations.

It is probably feasible to develop computational algorithms
which calculate the spectrumS(v) through an estimation of the
accurate orientation dependence of the frequenciesv(k) and
a(k), rather than by a crude accumulation of amplitudes at a set
of spectral frequency coordinates. By using Lebedev sampling
of the calculated peak frequencies, in conjunction with a li-
brary of precomputed Wigner functions at the Lebedev angles,
it should be possible to estimate very accurately all the spher-
ical momentsfLqq9 of both the peak amplitudes and the peak
frequencies. The full orientation dependence of the NMR re-
sponse is therefore defined precisely using a minimal number
of computed orientations. Conversion of this information into
the spectrum is nontrivial, but it should be possible to exploit
interpolation algorithms (20, 22–24, 30). This is an interesting
direction for future research.

CONCLUSIONS

Gaussian spherical quadrature is used in many fields
outside of NMR to obtain accurate spherical integrals with
minimal computational effort. The main conclusion of this
article is that these schemes can also offer significant ad-
vantages for the calculation of certain types of powder
average in solid-state NMR. The Lebedev sets are particu-
larly well adapted to problems in which the amplitudes of
the NMR peaks are orientation-dependent, while the peak
frequencies are not. The Lebedev sets are probably close to
the global optimum in these cases and can save large factors
of computational time.

In this paper we have also demonstrated that any other
sampling scheme may be improved by optimizing the weights
to minimize a selected set of spherical sampling moments.

Gaussian spherical quadrature has an advantage over
other methods only if the spherical components of the
averaged function become very small beyond a maximum
spherical rankLmax

f . For the NMR spectrum, this usually

FIG. 9. EstimatedLmax
f for different ratiosvaniso/vr and asymmetry pa-

rametersh.
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holds only if the peak amplitudes, but not the peak frequen-
cies, depend on orientation. We do, however, anticipate the
development of new algorithms which exploit the power of
the Gaussian spherical quadrature methods even in very
general cases.

In this article, we have also classified solid-state NMR
problems in terms of the orientational symmetry they display
and showed how this symmetry may be used to speed up the
numerical computation. Certain orientational sampling
schemes, such as the Lebedev sets, are well adapted to sym-
metry reduction. In other cases, for example the ZCW angle
sets, restriction to a fraction of the orientational space does not
appear to produce such large improvements.

In summary, the Lebedev sets do not represent a completely
general solution for the optimal calculation of powder averages
in solid-state NMR, but do offer very significant gains for
certain classes of problems. For the calculation of MAS spin-
ning sideband patterns, the use of Lebedev sets can reduce the
required computational time by large factors.

All orientational sampling schemes used in this article may
be obtained from the authors upon request or directly from the
Web site http://www.fos.su.se/physical/mhl/home.html.

APPENDIX 1

Specification of Orientational Averaging Schemes

The performance of orientational averaging schemes is very
sensitive to small details, and a number of minor variants exist
in the literature. We specify here the methods which we used
in our evaluations.

Step Method

The implementation of the STEP method listed here appears
to be more efficient than other versions we have tested.

We assume the ranges of integration for thea andb angles
to be divided intoNa andNb segments, respectively, giving a
total number of orientationsNstep5 NaNb. In the calculations
in this paper, we use equal steps in the anglesa andb, giving
Na 5 4Nb for the hemisphere andNa 5 Nb for the octant.

For thehemispherewe integrate over {0# a , 2p, 0 # b
# p/2}, selecting angles as follows:

a i 5
2p

Na

i , 0 # i # Na 2 1 , [53]

bj 5
p

4Nb

~2j 1 1!, 0# j # Nb 2 1. [54]

This gives a setShemi 5 { wj
S, ai

S, bj
S} with weights depending

on only theb angle, according to

wj
S51stepsinb j , [55]

where1step5 (Na ( j50
Nb21 sinb j )

21.

Integrating over anoctantcorresponds to the ranges {0# a
# p/2, 0 # b # p/2}, using the angles

a i 5
p

4Na

~2i 1 1!, 0 # i # Na 2 1 [56]

b j 5
p

4Nb

~2j 1 1!, 0 # j # Nb 2 1 ,

[57]

and weights as in Eq. [55].

ZCW

The sets from the ZCW algorithm are generated from num-
bersgM, whereM is an integer. These are given recursively
from

gM 5 gM22 1 gM21, M 5 0, 1, 2, . . . , [58]

with g0 5 8 andg1 5 13. For a givenM, the set contains

NM 5 gM12 [59]

orientations, comprising the following angles:

aj
M 5

2p

c3
mod$ jgM /NM , 1%, 0# j # NM 2 1 [60]

bj
M 5 arccos@c1~c2mod$ j/NM, 1% 2 1!#, 0# j # NM 2 1. [61]

Here c1, c2, and c3 are components of a vectorc, which
depends on the range of integration. We have for

(a) full sphere:c 5 (1, 2, 1)
(b) Hemisphere:c 5 (21, 1, 1)
(c) Octant:c 5 (21, 1, 4)

In the ZCW schemes, the weights are equal,wj
M 5 NM

21.

APPENDIX 2

Orientational Symmetry in Solid-State NMR

In this appendix, we explore the orientational symmetry of
solid-state NMR signals. Although some of these symmetries
are obvious, some only appear after ‘‘carousel averaging’’ over
one of the orientational angles (17).

Consider the general case of the NMR signals(t, VMR)
generated by a nuclear spin system at timet from molecules
with orientationVMR, specified as the three Euler angles (aMR,
bMR, gMR), relating a molecule-fixed frameM to a frameR
fixed with respect to a sample holder. In general, the sample
holder may itself be rotating, so the Euler anglesVRL 5 (aRL,
bRL, gRL) relating the frameR to a fixed ‘‘laboratory’’ frame
L are time-dependent. For rotation at a fixed angular frequency
vr about thez-axis of frameR, the first Euler angle isaRL 5
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aRL
0 2 vrt, while bRL is the angle subtended by thez-axis of

framesRandL. It is usual to define thez-axis of frameL as the
field direction so thatbRL is the angle subtended by the
spinning axis and the field. The angleaRL

0 defines the orienta-
tion of the frameR at timet 5 0, which is defined here as the
start of the NMR signal acquisition. For simplicity, the frame
R is chosen such thataRL

0 5 0 in the following discussion. In
high-field NMR the anglegRL does not affect any observations
and may be chosen arbitrarily.

The high-field truncated Hamiltonian at timet for molecules
in orientationVMR may be written

H ~t, VMR ! 5 O
L

HL~t, VMR ! , [62]

with

HL~t, VMR ! 5 @AL0
L #LTl0

L , [63]

where the sum is over spin interactionsL, andTlm
L is themth

component of an irreducible spherical spin operator of rankl.
Similarly, [ALM

L ]F is the mth component of an irreducible
spherical tensor of rankL, expressed in frameF. Such tensors
may be transformed between the general framesF andG, using
Wigner functions:

@ALm
L #F 5 O

m9

@ALm9
L #GDm9m

L ~VGF! . [64]

In general, the ‘‘spatial rank’’L is not necessarily equal to
the ‘‘spin rank’’ m, because some spin interactions involve
a three-way interplay of spins, molecular properties, and the
external field. In much literature the ‘‘spin part’’ of an
interaction is actually a conflation of spin terms and the
external magnetic field, a practice which is best avoided
because it obscures the rotational symmetry of the interac-
tions with respect to the spin polarizations alone. In the
present discussion,l refers to the irreducible spherical rank
with respect to rotations of the spin polarizations (keeping
the molecules and external fields fixed), andL refers to the
irreducible spherical rank with respect to rotations of the
molecules (keeping the spin polarizations and external fields
fixed). For example, some common spin interactions have
the following spin/space ranks: Isotropic chemical shift:l
5 1; L 5 0. Chemical shift anisotropy:l 5 1; L 5 2.
Antisymmetric chemical shift:l 5 1; L 5 1. Scalar spin–
spin coupling:l 5 0; L 5 0. J-coupling anisotropy:l 5 2;
L 5 2. Through-space spin–spin coupling:l 5 2; L 5 2.
AntisymmetricJ-coupling: l 5 1; L 5 1.

Most of the L 5 1 terms do not appear in the high-field
truncated spin Hamiltonian. The only exception is the antisym-
metric J-coupling term (l 5 1; L 5 1), which has, however,
never been observed in practice.

In a rotating sample, each interactionL is periodically
modulated, so that

HL~t, VMR ! 5 O
m

HL
~m! ~VMR !exp$imvr t % , [65]

and

HL
~m! ~VMR ! 5 @ALm

L #Rdm0
L ~bRL !Tl0

L , [66]

where the rotor-frame spherical tensor is

@ALm
L #R 5 O

m9

@ALm9
L #MDm9m

L ~VMR ! . [67]

The NMR signal from an orientationVMR at timet is given by

s~t, VMR ! 5 Tr$Qobs
† V̂~t, 0; VMR !r ~0, VMR !% , [68]

whereQobs is the observable spin operator andr(0) is the spin
density operator at the beginning of observation.V̂ is the
propagation superoperator, satisfying the equation

d

dt
V̂~t, ta; VMR ! 5 2iĤ ~t, VMR ! 1 Ĝ ~t, VMR !

V̂~ta, ta; VMR ! 5 1̂ , [69]

whereĤ is the Hamiltonian commutation superoperator andĜ
is the relaxation superoperator. In this appendix, we explore the
symmetry ofs(t, VMR) with respect to orientationVMR.

In the general case, there appears to be no symmetry ofs(t,
VMR) in the three-dimensional orientational space of (aMR, bMR,
gMR). However, it is worth mentioning an interesting symmetry
property with respect toreversalof the sense of rotationof the
sample. The following symmetries of the Wigner functions (16),

Dmm9
L ~p 1 aMR , p 2 bMR , p 2 gMR !

5 ~21!L12m1m9Dm2m9
L ~aMR , bMR , gMR ! [70]

dm0
L ~bMR ! 5 ~21!md2m0

L ~bMR ! , [71]

may be used to demonstrate the property

HL
~m! ~VMR ! 5 ~21!LHL

~2m! ~V# MR ! , [72]

where the orientationV# MR is related toVMR 5 (aMR, bMR,
gMR) as follows:

a# MR 5 p 1 aMR

b# MR 5 p 2 bMR

g# MR 5 p 2 gMR . [73]
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The spin Hamiltonians at a given timet, for the orientations
VMR andV# MR and rotation frequencyvr, are therefore related
through

HL~t, vr , VMR ! 5 ~21!LHL~t, 2vr , V# MR ! . [74]

Now in a powder sample,all orientationsVMR are equally
represented. If all spatial ranksL areeven,it follows that the
NMR signal from a powder sample is independent of thesign
of vr, that is, the sense of rotation. If an orientationVMR

experiences a certain sequence of spin Hamiltonians when
rotating the sample in one direction, then a different orientation
V# MR experiences precisely the same sequence of spin Hamil-
tonians when rotating the sample in the opposite direction. In
a finely divided powder, the total NMR signal is independent
of the sense of rotation. The same conclusions were reached in
a different way by Gullion and Conradi (19).

Interestingly, this conclusion is strictly valid only if all spin
interactions haveevenspatial ranksL. Odd-spatial-rank inter-
actions (such as the antisymmetricJ-coupling) might therefore
be detected by comparing signals from finely divided powder
samples rotating in opposite senses.

We now examine the consequence ofdynamical inhomoge-
neity (33) of the spin HamiltonianH(t), that is the case where
the Hamiltonian commutes with itself at different times, so its
eigenstates may be chosen to be time-independent. The eigen-
values ofH(t, V) are denotedvu(t, V) and are periodically
modulated:

vu~t, V ! 5 O
m

vu
~m! ~V !exp$imvr t % , [75]

where the eigenvalue Fourier components arevu
(m)(V). In this

and subsequent equations,VMR is writtenV for simplicity. The
NMR signal for dynamically inhomogeneous evolution may be
expressed

s~t, V ! 5 O
uv

suv~t, V ! . [76]

where suv is the signal associated with coherence |u&^v|,
given by

suv~t, V ! 5 Zuvexp$iFuv~t, 0; V !% . [77]

Here Zuv is the amplitude for excitation and detection of
coherence |u&^v|:

Zuv 5 ^u |Qobs
† |v&^v |r ~0!|u& . [78]

It is an important feature of the following discussion thatr(0)
and henceZuv are assumed to be independent ofV. This is in
general only true for simple pulse sequences such as idealized

single-pulse excitation or idealized Hartmann–Hahn cross-po-
larization.

The angleFuv(tb, ta; V) is the accumulated dynamic phase of
the coherence |u&^v| over the intervalta3 tb, given by

Fuv~tb, ta; V ! 5 2E
ta

tb

vuv~t, V !dt , [79]

wherevuv(t, V) 5 vu(t, V) 2 vv(t, V). This phase angle may
be written in general

Fuv~tb, ta; V ! 5 exp$2i~tb 2 ta!v# uv~V !%exp$ijuv~tb, V !%

3 exp$2ijuv~ta, V !% ,

wherev# uv(V) is the difference in the average of eigenvalues
v# u(V) 2 v# v(V) over the rotor period, and thej-functions are
defined (43)

juv~t, V! 5 2O
mÞ0

$vu
~m! ~V! 2 vv

~m! ~V!%exp$imvr t%

imvr
. [80]

Since exp{ijuv(t, V)} is periodic, it may be written as a Fourier
series:

exp$ijuv~t, V !% 5 O
k52`

`

Cuv
~k ! ~V !exp$ikvr t % . [81]

The signal componentsuv may also be written as a superposition
of sidebands at frequenciesvuv

(0)(V) 1 kvr , with vuv
(0) 5 2v# uv:

suv~t, V ! 5 O
k52`

`

auv
~k ! ~V !exp$i @vuv

~0! ~V ! 1 kvr #t % . [82]

By repeating the arguments in Refs. (17) and (43), it is possible
to relate theg-averaged signal component to the Fourier com-
ponentsCuv

(k):

^auv
~k ! ~a, b !&g 5 Zuv|Cuv

~k ! ~V !|2. [83]

Sincev# uv is independent ofg, this implies that the calculation
of the signal may be reduced to a two-angle average over (a,
b) of the functions |Cuv

(k)(V)|2.
The symmetries ofCuv

(k) may now be established. From Eq.
[74], omitting odd ranksL, the Hamiltonian eigenvalues have
the symmetry

vu~t, V ! 5 vu~2t, V# ! , [84]
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which corresponds to the following relationships of the Fourier
components for orientationsV andV# :

vu
~m! ~V ! 5 vu

~m! ~V# !* . [85]

This in turn leads to the following relationship of thej-func-
tions

juv~t, V ! 5 2juv~2t, V# ! , [86]

and hence to the symmetries

Cuv
~k ! ~V ! 5 Cuv

~k ! ~V# !* . [87]

It follows that theg-averaged signal components from orien-
tations of the type (a, b) and (p 1 a, p 2 b) are identical:

^auv
~k ! ~V !&g 5 ^auv

~k ! ~V# !&g . [88]

This proves theCi-symmetry property in the case of a dynam-
ically inhomogeneous interaction, with orientation-indepen-
dent coherence preparation at the beginning of detection. This
property applies independent of choice of reference frame.

We have recently shown thatCi symmetry also applies to
several important classes of dynamicallyhomogeneousproblems,
for example, the calculation of powder NMR spectra for arbitrary
systems of coupled spins in rotating solids, in the absence of RF
fields. Using the COMPUTE algorithm (40), a three-angle aver-
age may be reduced to a two-angle average over half of the
sphere. This is discussed in a subsequent article (34).

In the case of a single interaction, or many interactions with
the same principal axis frame, the frameM may be chosen to
coincide with the principal axis frame. For evenL interactions,
this implies the symmetries

@ALm
L #M 5 0 for m odd

@ALm
L #M 5 @AL2m

L #M . [89]

The absence of molecular frame components withm odd leads
immediately to the additional signal symmetry

suv~t; a, b, g ! 5 suv~t; p 1 a, b, g ! . [90]

The full D2h symmetry may be recognized by considering the
orientation definedV9 5 (2a, b, 2g). From the symmetries of
the principal axis frame tensors, and the Wigner function
symmetry (16),

Dmm9
L ~V9 ! 5 ~21!m92mD2m2m9

L ~V ! , [91]

one may demonstrate the following symmetry of the Hamilto-
nian Fourier components:

HL
~m! ~V9 ! 5 HL

~2m! ~V ! . [92]

This is analogous to Eq. [74], and the same reasoning may be
followed to establish the following symmetry of theg-aver-
aged signals:

^auv
~k ! ~V !&g 5 ^auv

~k ! ~V9 !&g . [93]

The three properties of Eqs. [88], [90], and [93] establish
together theD2h symmetry of theg-averaged MAS signal in
this case.

The symmetry properties of NMR signals from static solids
are much easier to establish since there is no intermediate
reference frameR, and nog dependence. The preceding equa-
tions may be used directly by settingbRL 5 0. For example,
Eq. [74] leads immediately to

HL
~0! ~VML ! 5 ~21!LHL

~0! ~V# ML ! . [94]

Since only them5 0 Fourier component exists ifbRL 5 0, this
property immediately establishesCi symmetry for static solids
if odd-spatial-rank interactions are ignored. It follows that
orientational averaging over a hemisphere is almost always
sufficient in static solids (20). The D2h symmetry of static
spectra in the case of a single interaction using the principal
axis frame is also well known (35).

The preceding arguments were developed for the high-field
limit. Second-order quadrupolar interactions are readily ac-
commodated in the same framework by using a modified
quadrupolar Hamiltonian which incorporates second-order
shifts (44). Since all correction terms still have evenL, the
conclusions of this article are unchanged.
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