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We investigate Gaussian spherical quadrature as a method for
calculating orientational averages in solid-state NMR. For the case
of magic-angle-spinning sideband amplitudes of isolated spins-1/2,
we demonstrate the superiority of Gaussian spherical quadrature
over other orientational averaging methods. Depending on the
shift anisotropy parameters and the desired accuracy, the compu-
tation speed is enhanced by a large factor (between two and many
hundreds). In addition, a method for improving any present sam-
pling scheme is devised. Such schemes are called SHREWD
(Spherical Harmonic Reduction or Elimination by a Weighted
Distribution). The role of orientational symmetry in solid-state
NMR is explored. We also discuss the limitations of the Gaussian
spherical quadrature methods. © 1998 Academic Press

Key Words: solid-state NMR; magic-angle-spinning; powder av-
erage; orientational symmetry; Gaussian spherical quadrature.

INTRODUCTION

This raises the issue of how to select the molecular orient:
tions used in the simulation. The most obvious scheme
simply to generate the orientational samples randomly, so as
emulate the physical situation in a real unoriented sampl
Unfortunately, a real powder consists of an enormous numb
of orientations—for example, 100l powder in which each
crystallite consists of a cube with side 10n contains 18
separate crystallites. Usually, it is out of the question to sim
ulate such a large number of orientations.

A random sampling scheme performs poorly if the numbe
of orientational samples is reduced to a few hundred. This
because thinly distributed random values tend to forn
“clumps”—a well-known example is the formation of con-
stellations of stars in the night sky. Improved sampling strat
egies tend to concentrate on reducing the “clumping” as muc
as possible, by ensuring that the orientational samples a
evenly distributed. Normally, geometrical arguments are use

Solid-state NMR is a powerful method for obtaining gecoto distribute the orientational samples as evenly as possik

metrical and dynamical information at the molecular level. Adike the placement of dimples on the surface of a golf B (
opposed to liquid-state NMR, thanisotropicspin interactions We refer to such approaches as “geometrical.”
are directly accessible. The magnitude and direction of thesen this article we stress a different approach, which is “math
interactions are closely linked to the local molecular structurematical” rather than “geometrical” in essence. The method i
For example, the through-space dipole—dipole coupling is djased on an assumption that the function to be averaged may
rectly related to the distance between nuclei and the boagpressed accurately as a finite series of orthogonal functior
directions. Recently developed experiments allow estimatigpere each function is multiplied by an (unknown) coefficient
of internuclear distancesl{3) and molecular torsional andone of these coefficients is the accurate average of the functic
interbond angles4(-7), even in biomolecules with high mo-The orientational samples are then selected so that a large num
lecular weights. _ _ of the remaining functions are eliminated identically, leaving only
Solid-state NMR methods are often applied to systems with §, target coefficient: the orientational average. The most impc
Ion_g—range molecular order, such as powders, polycrystalline Mt schemes of this type were developed by Lebe@le$. The
terials, most polymers, and amorphous materials. The NMR fespedey schemes are widely used in other branches of scien
sponse of nonoriented samples is a superposition of signals fr@%ecially in density functional theory3-15. We show here that

very many molecular orientations. In most cases, the NMR signgl, haye significant advantages for some problems in solid-stz
cannot be derived analytically and must be calculated NUMEGRAR as well

cally. The numerical simulation must therefore incorporate a

. Y . . : .~ ~The design of optimal orientational sampling schemes de
powder average” over all possible molecular orientations. Since

the computation of the NMR signal for each orientation is ofteFr)]?nd greatly on thsymm_etryof_the functlon to be averaged
with respect to the orientational variable. The Lebede

time-consuming, it is highly desirable that a reasonable numerical . .
schemes appear to be particularly suitable when the averag

approximation to a full powder average be obtained using.a . : . . .
bp P 9 gfunct|on displays some kind of orientational symmetry. On¢

minimum number of orientational samples. . . . . .
P section of this article attempts to classify solid-state NMF

! Corresponding author: mattias@physc.su.se. problems in terms of the symmetry they display.
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COMPUTATION OF ORIENTATIONAL AVERAGES 221

ORIENTATIONAL AVERAGING In numerical calculations, this integral is approximated by
summing the function over a set dF different orientations
Euler Angles and Reference Frames and weightsS = {w?, O3,

In general, numerical calculations of solid-state NMR signals
involve the calculation of an orientationally dependent function _
f(€2), where the orientatiofl may conveniently be expressed as fo=2 Wit (), (4]
an Euler angle triple€) = («, 8, v) (16). The function may also =1
depend on other parameters as well, not indicated explicitly here.

The Euler angle§) = (a, B, y) represent the relationship betweenvhere_the weights are normalized so that their sum eque
two different reference frames. Umty. fs is the estimateof the pOWder averagé USing the

The proper choice of these reference frames depends on3a&WPling schem& The optimum sampling schentfor a
prob|em. For examp]e, in rotating SOlldQ refers to the given number of Sampld‘ésminimizes the error Ofintegration
relationship between a molecular reference framéixed with € defined by
respect to the molecular framework, and a rotor-reference
frame R, fixed with respect to the rotating sample holder eS=1[f—f9. [5]
(“rotor”). The Euler angles are then notatedy,r = (aur:

Bumrs Ymr)- In static solids, it is usually more appropriate torwo-Angle Integration
choose a “laboratory” reference franhe fixed with respect to

the applied magnetic field. In this case the Euler angles ardn Many important cases, it is not necessary to perform tt
notatedQy,, = (s BuLs VL) integration over the anglg explicitly. Either the functionf is

In all cases, the key points are (i) the orientational angidiiependent ofy, or the average ovey may be performed
Qur OF O, are time-independent over the duration of thimplicitly by a modlflcatlon of the function |tself1(_7—19._ Some
experiment, and (ii) the actual physical situation may be reﬁz(amples are given later. In these cases, the pnentatl_o_nal aver
resented accurately by an integration over all possible valued' Of the function reduces toteo-angle integrationspecified by

the orientational variable. For example, in a rotating solid it

would be inappropriate to uge,, as a variable, because these _

Euler angles are time-dependent. f= N(Z)J f(Q)dQ, (6]
If the NMR spin dynamics depend only on a single aniso- ve

tropic interactionA, it is possible to choose the molecular

frame to coincide with the principal axis system (PAS)/\qf where

denotedP”. The relevant orientational variable is then written

QA (for rotating solids) o3, (for static solids). The number V@ ={0=a<2m 0=B=m}

of sampled orientations may be considerably reduced in this

NS

case, as discussed later. dQ = sinB da dB

In the following discussion, the variab{eis used to refer to N@ = (47)7 L, [7]
the appropriate variabl®,,g, Qg , Q55 0or Q5 , depending on
the problem. In this case, it is possible to use the following relationshif

between the two Euler angles,(8) and the polar angle®¢):
0 = B and ¢ = a. The two-angle orientational average is
The orientational average éfcorresponds to the integral equivalent to the integration of a function on the surface of
sphere, a property which is exploited in the ‘“geometrical”
sampling approaches.
f=NO f f(Q)dQ, (1] The conditions under which the orientational averaging may t
Ve reduced from three angles to two angles are investigated later
Most of the following discussion is restricted to the problen
where the volume of integratiod® represents the ranges forof two-angle orientational averaging.
the three Euler angles,

Orientational Averaging—the General Case

Existing Powder Averaging Methods

Q) —
v (0=a<2m0=p=m 0=y<2m} A large number of powder averaging methods have bee

dQ = sing da dp dv, [2] reported 20-30Q. In Ref. 25), many methods were compared.
In the following discussion, we focus on those methods whic
and the normalization constant is were reported to give best results, as well as the common

used “step method.” The schemes evaluated in this article al
NO® = (87%)L. [3] specified completely in Appendix 1.
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(i) The stepmethod: The simplest version of this approactwhere

divides each of the:- and B-ranges (andy when appropriate)
L _ H HP

;r;:]oﬁtjas\./enly spaced meshes. The wmg)q?sare proportional to Dty (@, B, v) = expl—iqa}tdy (B)exp—iq'y},  [9]

(i) The ZCW sampling schemes were originated by Za;.q g4
remba @6) and later modified by Conroy2{) and Wolfsberg ¢,
and coworkers 48). These schemes are commonly used in
solid-state NMR 8, 29. The orientations generated are solu-
tions of Diophantine equations, and provide rather uniform
distributions of orientations. The weighm}? are uniform in the
ZCW method.

(i) REPULSION(25). This elegant method takes the geo-

metrical approach to its logical conclusion. A very even did¢Nere the asterisk denotes complex conjugationdpgds the

tribution of orientations is obtained by first placing particles <ronecker delta funct(|3?n. The Wigner functions have the fol
on the surface of a sphere, and then adjusting their positidR¥ing integral overv==
while minimizing a repulsive potential function between each
particle and its neighbors. The final stage of the optimization is . ,
to adjust the weights/® according to the proximity of nearest Dgq (2)dQ = 87°8108408q0- (11]
neighbors to each sampling point. ve
A weak point in the REPULSION scheme is that the opti-
mization of the weightsv®is rather arbitrary. We demonstratelt follows that the integral of over V(® evaluates to
below a new method for optimization of the weights.

4 (B) is a reduced Wigngr functionl§). The Wigner
ons are orthogonal, meaning

L L 8
Dl (Q)(Dlj (A2 = 5 88y ¥, [10]
VIE)

? = fooo. [12]
GAUSSIAN SPHERICAL QUADRATURE

The basic idea behind@aussian quadratur8l) is thatany Hence, the prientat(i)onal averagefaiorresponds to the expan-
function may be expanded as a sum of orthogonal basis fufi@n coefficient oDgo = 1 The pgrpose”of powder averaging
tions, usually polynomials of increasing orderlf the expan- May be reinterpreted as “projecting out” this component fron

sion is convergent, and the coefficients are very small beyofitf mrf]mlfte”ser_les.d _ hat the series of
a certain maximum rank,.. then the function can be ap- N the following discussion, we assume that the series of cog

proximated within a certain error by a truncated series usifigi€"tS fLaq iS convergent and falls rapidly to zero forlarger
basis functions with. = L., The average of the function isthan“sprlne threshold vali,,. Roughly speaking, functions that
estimated by choosing the samples and weights so that &f “difficult” to Integrate have large values tf e and func-
polynomials up to and including the order. .. are integrated UONS which are “easy” to integrate have small values b,
as accurately as possible. Gaussian quadrature is extensiveljN® characteristics of a sampling scheme may be stated
used in numerical integratior87) and has been applied ex-€rMs of itssampling momentslefined by
plicitly to some NMR problems30, 32.
For a two-angle spherical average, the appropriate polyno- S h Sl S
mial functions are the spherical harmonics. This integration ‘Tqu’:Z Wi D (€F). [13]
method is called &aussian spherical quadraturédngle sets =t
have been constructed that provieeactintegration of spher- o )
ical harmonics for all. = L, with, presumably, the lowest By definition, ogoo = 1. From the orthogonality of the
possible number of angles for a givep,, (9—12. W|gn.er functlpns, the es.tlmated orlgntatlonal average of tf
The efficiency of this approach depends on the maximufnction, obtained by a given sampling scheme, is equal to
order required for an accurate estimaté ahe lower the value
of L. the smalleMN needs to be for exact integration.

% L
=2 > flqoiy- [14]
Spherical Sampling Moments and Integration Errors L=0 qq=-L A

Consider first the general case requiring integration over all
three Euler angle§) = («, B, ). The functionf(Q) may be The exact integral of the function is the first term in this series

expressed as an infinite sum of Wigner functi@s, (€): so the error generated by the sampling scheme is
e L ® L
f(Q) = E z quq’D:q’ (Q): [8] 65: Z E quq’ O-qu’ . [15]
L=0q,q'=-L L=lgqg=-L
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This represents theverlapbetween the spherical moments of 0.08
the functionf, .o, and the sampling momentsf'qq, for all a
ranksL = 1. Sincef, 4 is very small forl > Lf .. & scheme
Sprovides an accurate estimate of the orientational average of
f if the sampling momentsqu are small for all rankg in the

range 1= L = L .

0.04

Rank Profiles 0.00

If the function depends only on the Euler angleandp, the 0.08 , ,
Coefficientsfqu are zero fog' # 0, so that only the moments b A
floo andoqu are relevant. It is convenient to use the following L
expressions for rms sampling moments and function coeffi-
cients: 0.04 - T

L

(2L+1 2 lobeo )2 [16] 000
L " C 0.08 . . . )
c
fL= <2L +1 E quo|2) - [17] I -

) 0.04 -
We call the plot ofs} againstL the rank-profileof a sampling i
scheme, and the plot df againstL the rank-profile of the 4/\/\
function to be averaged. These rank-profiles give a good qual- 0.00 - 0 20 0 0
itative indication of the performance of a sampling scheme. An L
example of a rank-profile for a certain function is given in Fig.

la. Rank profiles of two orientational sampling schemes areg. 1. (a) Rms expansion coefficienfs plotted against rank. The coef-
given in Figs. 1b and c. The scheme given in Fig. 1b fi&ientf, is the orientational averade(b), (c) Rms sampling moments) as
expected to be “poor” since there is significant overlap pdunction of rank for two schemes, A and B. The valugs= 1 are not shown
tween the reglons where and U'L are finite. The scheme in in plots b and c. Scheme A would give a poor estimatiofy @fhile scheme B

. . would be accurate.
Fig. 1c is expected to be “good” because the momertsre
only significant in the region beyorid > L' ..

and are believed to perform this task in the minimum possibl

The Lebedev Schemes number of angles, given approximately by

Itis possible to design sampling schemes that integatite
spherical harmonicexactlyup to and including a certain s (LS i+ 1)
orderL? .. These schemes may be applied to the two-angle Nieg= -3 bmax odd. [19]
averaging problem because the Wigner funcﬁltg(a B) is
proportional to the spherical harmonY@q(B «). Note here
the distinction betweeh?,,, the maximum rank for which
all sampling moments vanish for a certain Gaussian sph
ical quadratureschemeandL,,, which is the highest rank
represented in the series expansion of thection to be

integrated. . ; :
Is identically th I fi Il odd
The schemes of Lebede9+{12 are constructed under oc- ?::ISELS aentically the sampling momenié o for alo

zzggral symmetryQ,). The Lebedev schemes have the prop- Figure 2 compares rank-profiles for some Lebedev sets wi

Lebedev schemes exist for a varietylgf,, values, the largest
reported so far being 53. The number of angh&g for
Yhrious values ok, are given in Table 1. Since the octahe-
dral group contains inversion, the angles come in paissf,)

= (ay + ar, m — By). This inversion symmetry on the sphere

two schemes based on the geometrical approach. Note t
completely flat profile of the Lebedev schemes out to the rar
=0forl=L <L, L = Lyae and the “sawtooth” appearance of the sampling
moments beyond that. The schemes ZCW and REPULSIO
£=0 for L odd [18] do not set any of the sampling moments exactly equal to zer
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TABLE 1
The Number of Orientations Required in Spherical Quadrature Schemes
LS ax N(LEB)? N(LEBhemif N(LEBocty N(SHREWD-STEPhent) N(SHREWD-STEPocf)
11 50 25 10 66 18
15 86 43 16 120 36
17 110 55 19 153 45
19 146 73 22 190 50
23 194 97 31 276 72
29 302 151 46 435 120
41 590 295 85 861 231
47 770 385 109 1128 288
60 — — — 1891 496
100 — — — 5151 1326

a All spherical harmonics with rank < LS, are eliminated, and also all oddspherical harmonics.
b All spherical harmonics are eliminated whose ranls both even and less than or equal{f.,
©All real parts of spherical harmonics are eliminated whose taikboth even and less than or equalfp,,, and whoseg value is also even.

although the moments decrease gradually as the number of. The perfectly flat rank profile of the Lebedev schemes ¢
angles grows. low L values allows these schemes to achieve extremely hic
There is no strict correspondence between these raadcuracy using a relatively low number of sampling points
profiles and the actual performance of an orientational saiflhe Lebedev schemes are therefore greatly superior in ca:
pling scheme. The error depends, as described earlier, onwieere high accuracy is required, providing of course that th
rank profile for the functionf(Q2) as well as that of the function is such that! = 53.
sampling scheme. For functions with convergent rank pro-2. The situation is less clear when the goal is to achiev
files, this implies that the error is largely determined by theaoderate accuracy of the powder average using a minim
performance at high ranks > L .. which has irregular number of orientational samples. In this case, a compromi
behavior, as may be seen from these plots. Furthermore, thast be achieved between performance at high and low ran
rank profiles obscure the phase relationship between theThe Lebedev schemes generally have high sampling m
moments(rfqo with different q. Nevertheless, it is possiblements just beyond the threshdl§,.,, whereas the best “geo-

to draw some qualitative conclusions: metrical” schemes achieve a rather smooth profile with a broz
0.06 T T T T T T T
oosl @ LEB8E | d zowsy | g REP100
0.02 B
0.00 L
0.06 T T T . T T T T T T T T
ooel b LEB146 | | € Zcwi44 || h REP150 |
OL
0.02 B
0.00 L
0.015 . ; : ; . ; , ; : :
ool © tes7zo || [ f zowets | | | REP700 )
0.005} - d - i
0.000 I L L I s L L L !
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

L

FIG.2. Rms sampling moments’ for three powder methods at comparable numbers of angles. The magertt is not shown. The plots include Lebedev
schemes withL3,, = 15 (a), 19 (b), and 47 (c), ZCW schemes (d)—(f), and REPULSION sets (g)—(i). Note the magnified scale in the lower three plots
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flat region at low ranks, peaking more gradually. In applican the appendix, the NMR signal from a rotating solid I&&s
tions which do not demand extremely high accuracy, otheymmetry if (i) the eigenstates of the spin Hamiltonian do no
methods such as ZCW and REPULSION may therefore owthange as the sample rotates, and (ii) the observable coh
perform the Lebedev schemes. ences are prepared with orientation-independent phases. T
3. In many problems in solid-state NMR, the functif§f2) spinning sideband patterns generated by “inhomogeneou:
possesses symmetry with respect to the orientddiolm these interactions (in the dynamic sense of Maricq and Walgf)))(
cases, the Lebedev schemes gain a further advantage over misplay C; symmetry with respect to molecular orientation.
of the “geometrical” schemes, because they are based uporRecently, we have proved that an important class of dynan
octahedral symmetry, and the number of sampling pointsically “homogeneous” problems also h&% symmetry. This
readily reduced by large factors if the integrand possessesludes the NMR spectra of arbitrary coupled spin systems |
symmetry. This is not generally true for the ZCW and REPULrotating powdered solids, in the absence of radio-frequenc
SION schemes, which do not at the moment exploit orientfields, and with uniform preparation of the spin coherence:
tional symmetry. In the next section, we discuss symmetry aiitie conditions leading t€; symmetry in dynamically “ho-
its consequences for numerical calculation of powder averagamgeneous” problems are discussed in a following papé: (

ORIENTATIONAL SYMMETRY Two-Angle Dependence: Symmetry Group, D

These problems display two additional properties in th

The orientational symmetry of typical functions of interest "?unction ;-

solid-state NMR is discussed in Appendix 2. The following
orientational symmetries may be identified.
f(w+ «a, B,0) =f(a, B, 0)
Three-Angle Dependence f(—a, B,0) = f(a, B, 0). [22]

For these problems, the functidndisplays in general no . _
symmetry whatsoever with respect to the orientational vaf®n the unit sphere, these correspond to a twofold rotation ax
ablesQ = (a, B, ). The most general cases in the NMR ofllongz and a reflection planez Combined with the inversion

rotating solids fall into this category. operation, the function conforms to symmetry grddp,. The
corresponding properties of the spherical coefficients are

Two-Angle Dependence: Symmetry Groyp C

For these problems, either the function to be averaged is flar = fraodao
independent of the Euler angle or else the averaging over fLo = O for oddL
may be done implicitly by a simple modification déf In
addition, there is a further symmetry ia,(8) corresponding to
inversion of points through the center of the sphere. These floo = floo- [23]
properties may be expressed

f.eo = 0 for oddq

For problems of typ®.,, it is only necessary to integrate over

f(a, B, v) =f(a, B, 0) one octant of the sphere: 9 a = 7/2, 0= B = =/2. This case
_ is common if there is only one anisotropic spin interactior

= + — . . ) X : o
fla, B, 0) =Tflatm m =B, 0) [20] involved and the orientational scheme exploits the principe

. . L axis system of that interactiol,,, symmetry is also encoun-
Since inversion is the only symmetry element, the correspontéfred if there are several interactions, all sharing the san
ing point symmetry group has the Setilies symbolC;. This '

: . ._principal axis frame.
symmetry leads to the following properties of the Spher'cglrForpproblems withD,,, symmetry, the relevant sampling
components of : 2h ’

moments may be defined through

fLaq = fLaodqr0 L

fLo = 0 for oddL. [21] af(DZh):(ITlrl EL IR0t} ?)Y?, L even. [24]
g=-1L,
qeven
For problems of this type, a powder average may be computed
by integratingf over a hemisphere & o < 2, 0= B < 7/2. For static solids in high fieldthe existence of a single
For problems withC, symmetry, the relevant orientationalanisotropic interaction, or several interactions with commo
sampling moments(C,) are given by Eq. [16] witlL taking reference frames, is sufficient to establi3, symmetry 85).
only even values. For rotating solids in high fieldpne needs in general (i) a
All cases in the NMR of static solids, and many problems isingle anisotropic interaction, or several interactions with corr
the NMR of rotating solids, displag; symmetry. As discussed mon principal axis frames; (ii) time-independent eigenstates
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the spin Hamiltonian; (iii) observable coherences excited with TABLE 2
orientation-independent phases. An important example in ro- Orientations and Weights for LEBoct31
tating solids is the generation of spinning sidebands by the
chemical shift anisotropy interaction of isolated spin sites, as “ p b
discussed later. 0.00000000 0.00000000 0.003564681
0.00000000 20.2288199 0.020207384
Other Forms of Symmetry 0.00000000 45.0000000 0.022867624
. . 0.00000000 69.7711801 0.020207384
Other forms of orientational symmetry appear to be rare. For  0.00000000 90.0000000 0.003564681
example, we are aware of no cases in which the function is 7.52995108 82.5342479 0.032854216
independent ofy, but for which the equivalence 6, g) and 10.7708560 58.3237741 0.044241991
f(m + a, m — B) cannot be established. Cases in wHi@h, 3, 16.8498911 33.2761302 0044241991
: | tof b ¢ 17.5875412 73.1871458 0.041265902
0) is equal tof(m + «, B, 0) but not tof(—«, B, 0) appear to 20.2288199 90.0000000 0.020207384
be equally rare. 25.0816830 47.8327264 0.044869633
29.7677350 63.5962810 0.044150172
EXPLOITATION OF SYMMETRY 32.1331436 80.8487219 0.044241991
45.0000000 10.5884838 0.032854216
45.0000000 24.1455738 0.041265902
Two-Angle Dependence 45.0000000 38.9683735 0.044150172
Orientational symmetry has a major effect on the computa- 29209000 54.7356103 0.044587065
_ y y ! P 45.0000000 71.6876561 0.044869633
tion of powder averages. The Lebedev schemes belong to the 450000000 90.0000000 0.022867624
O,, symmetry group, which contains bo@ and D, as sub- 57.8668563 80.8487219 0.044241991
groups. If an angle pairef, B) is a member of a Lebedev set,  60.2322650 63.5962810 0.044150172
then either the seven angle pairs 64.9183170 47.8327264 0.044869633
69.7711801 90.0000000 0.020207384
72.4124588 73.1871458 0.041265902
(m+a, B);(—a, B); (m—«a, B); (a, m— B); 73.1501089 33.2761302 0.044241991
79.2291440 58.3237741 0.044241991
(m+a,m=B);(-a,m=B); (m—a, m— B) [25] 82.4700489 82.5342479 0.032854216
90.0000000 20.2288199 0.020207384
. . 90.0000000 45.0000000 0.022867624
are also included in the Lebedev set, or else one of them 30.0000000 66 7711801 0.020207384

coincideswith («, B8), within modulo 2r. Clearly, computation 90.0000000 90.0000000 0.003564681
may be restricted to those pairs which are not related by the

symmetry operations of the appropriate group. These symmeNote. Orientations in degrees.

try reductions give the Lebedev sets a decisive advantage for

problems of type<; and Dy,

For problems of typeC;, the Lebedev angle sets may bephere 20, 29 (in the case ofC; symmetry), or over only one
reduced by a factor of 2. The angle pairs in the reduced set natant of the sphere (in the case®§;, symmetry). This leads
be constrained to the upper hemisphere of the sphere. For this higher density of sampling points, which is expected t
reason, we refer to this type of Lebedev set &&mispherical improve the accuracy of the integration. Our implementation c
Lebedevset, denoted LEBhemNj whereN is the number of this for ZCW is described in Appendix 1. In practice, we ofter
orientations in the set. found the improvement in performance rather marginal. How

For problems of typ®.,, the Lebedev sets may be reducedver, it is possible to improve performance further by optimiz
by a factor between 5 and 8. The angles may be constrainedng the weightsmjs, as described in the next section. REPUL-
a single octant of the sphere. Such sets are calleddwamt SION may also be adapted to the symmetry of the integrand |
Lebedewsets and denoted LEBd¢t building symmetry constraints into the pseudopotential used |

The number of angles in the reduced Lebedev sets are lisggalimizing the angle sets. For example, each point could &
in Table 1, and a scheme is given explicitly in Table 2. associated with symmetry-related “image<?5j. At the mo-

It is also possible to construct “geometrical” schemes witment, it is not known whether symmetrized REPULSION set
symmetrical distributions of sampling points. Two examplesre competitive with the Lebedev schemes.
are the step method and SOPHEB)( These angle sets may
also be reduced by large factors when applied to pmblems'ﬁ{ree-Angle Dependence
type C; and D,

Many schemes, such as the current versions of ZCW andn the NMR of rotating solids, the function to be evaluatec
REPULSION, cannot be reduced undgror D,, symmetry. often has no symmetry at all in the orientational variables.
Nevertheless, the symmetry of the integrand may still be ethwee-angle average must be computed. The Lebedev sets ay
ploited by distributing the points over only one half of thenly to two-angle averaging and cannot be used directly. Th
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also applies to many other schemes treated here, such aSince the Wigner functions are complex in general, th
REPULSION. number of simultaneous equatioNg,srepresented in Eq. [27]
Any two-angle scheme may be extended to the three-angiealmost twice the number of rows M 3.
case by handling they-angle separately. For example, all In principle, solving the linear system allows one to “de-
D;q,(ﬂ) for L = L,,oxMay be integrated exactly by combiningstroy” all Wigner functions out to an arbitrary maximum rank
a Lebedev method with & (,,, + 1)-fold step in they-range. L,,.. However, the number of angles required to do this i
However, this requires a large number of angles and is prgirohibitive in practical cases.
ably far from optimal. In the following examples, we greatly reduce the dimensiol
The Lebedev sets may presumably be generalized to prodotethe matrix M5 by taking the special case of two-angle
accurate quadratures of the three-angle Wigner funcm’agsﬂ) averaging of a real function witg; andD.,, symmetries. In the
using far fewer orientations, but no such sets have appeared, todage ofC; symmetry, one only needs to include rows with
authors’ knowledge. The problem of finding better solutions in tteven,q’ = 0, andg = 0. This reduces the number of simul-
three-angle case is currently under investigation. taneous equations to

SHREWD SCHEMES—OPTIMIZATION OF WEIGHTS 1
Neqs(ci) = E Lmax('—max + 3) +1. [28]

As shown in what follows, the Lebedev schemes appear to
be superior to any other method for integration of functions
with C; andD,,, symmetry, in the case thht,,, is less than 53. For D, symmetry, the number of equations is reduced furthe
However, there are some remaining problems with the LeBy considering only the real parts of Wigner functions and eve
edev schemes: g-components:

1. No Lebedev schemes currently exist foy,,, larger

1
than 53. . . Neqs(Dan) = 2 (Linax + ) (Lna + 2). [29]
2. The Lebedev rank profiles often have undesirable behav- 8

ior beyondL;, ... This leads to nonoptimal performance when

only moderate accuracy is required. The columns (rows) oM3 are in general linearly in-

For these reasons, we have attempted to combine the “g 8pendent. Such a system of linear equationsNiun-

metrical” and “mathematical” approaches: The distribution o nowns conforms to one of three possibilities: (i) The num

orientations is based on geometrical arguments, but the wei & of unknown weights exactly matches the number c

. S _ - . - .
are provided by optimizing a spherical rank profile. We CaﬁquatlonsN = Negs This provides a set of weights which

these schemeSHREWD(Spherical Harmonic Reduction or€"Suré that all relevant sampling moments exactly vanis
Elimination by a Weighted Distribution). foS[ 0 <L = Lma (i) The System |3)verdet'e:\'rm|neothat IS,
The SHREWD strategy will first be stated in its most generd) = Neqs We return to this case later. (iii) The system is

form. Consider an arbitrary set Nsorientationsﬂj = (ay B, underdetermined; Ri> Negs This case is of no practical

;). We wish to integrate exactly a set of target function&terest.

D5y (), whereL = 0, 1, ... L and the indices| andq’

take all possible values. The optimum set of weightS}{may Exact Solutions

be deduced by solving the linear system of equations We have solved systems of equations using orientatiot
generated by the ZCW algorithm. The solutions whify =
Mgwszmarget, [26] NS have characteristics similar to those of the Lebede
schemes. However, these sets are approximately three tir
or, in explicit matrix notation, larger than the Lebedev sets, so these are not of gre
interest.
0 0 0 The preceding approach may also be applied to the st
DOO(:Ql) DOO(:QZ) L DOO(:QNS) ﬁ (1) method. This can be implemented comparatively easily and h
Dhy (@) Dig(Q) - B; () 21=|-|, [27] the advantage of beingpen-endedallowing straightforward
50 Faar N wel \o construction of schemes with arbitraky, ., We demonstrate
. NS,

the method over a hemisphere and octant.
These SHREWD-step schemes are constructed as follov

wherews and oy, gerare vectors having weights and samplingeject areven L, and generate orientations according to
moments as elements, respectively. Each row in the misitgx

represent a certain combination lof g, andq’, and the col- .
umns correspond to the orientatiéy. The last row in the B = o 1=j=N [30]
matrix M3 corresponds th. = q = @' = L 2N -
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whereNg = %Lmax + 1 and mines the relative importance given to satisfying each individ
ual equation. For example, it is very important to keep th
27 normalization conditiorogy, = 1 fulfilled. Furthermore, it is
N’ 1=1=N,forhemisphere more desirable to keeg,, small for low values of. while the
a= o ¢ . [31] values for very largé may be allowed more freedom. This is
IN (2i+1),0=i=N,— 1 foroctant taken into account by obtainingweighted least-squarg89)

solution according to

with N, given b
9 y GM SWS: G Otarget [34]

whereG is a diagonal matrix whose elements indicate the
relative importance of satisfying each of the simultaneou
equations. In practice, the matrix elements@fre chosen
by assuming that the spherical coefficiefitg, of the func-
tion to be integrated decay sharply aftéf,, so that sam-
pling moments(rfqO are less important for > L. In our
evaluations, we assumed a Gaussian curve with respéct tc

andq, according to

Lmax + 1 for hemisphere
a [32]

1
ceil{4 (Limax + 1)} for octant -

The function ceil is defined such that for an argumentt
returns the smallest integer larger than or equal.to

To each orientationd;, B;}, associate a weight;, given as
the solution of the following system of equations:

Po(cosB;)  Po(cogB,) - - Polcogy,) W, 1 — 106
G (0, 0 = 10
P,(cos3;) P,(cog3,) - -- P(copy,) Wo | _ 0
: : : SR G(L, q) = exp{—(L/Le)* — (a/ge)?}, L>0,  [35]
P (co$B;) P, .[(coB,) --- PLmax(COquﬁ) Wiy 0
[33] wherel g andgg determine the width of the Gaussian function.
The large value ofG(0, 0) ensures that the weights remain
where P, (x) is the Legendre polynomial of order. This almost normalized during the least-squares optimization. Exa
variant of the step method has weights which are not equalrtermalization of the weights is imposed afterwards.
sinB;, but which are adjusted to provide the accurate quadra-The weighted least-squares solution of Eq. [34] is given b
ture. These schemes are approximately 2.5 times less efficient
than the Lebedev sc_hem_es. However, the weights are readily Ws=(GM 3)* G Tiarges [36]
calculated out to arbitrarily high ranks, whereas the Lebedev

schemes are at present only available uplg, = 53. They where the cross indicates the pseudo-inves. (

are therefore of interest when integrating “difficult” functions. Best results are obtained by adjusting and g, according
lr:c!:’the number of angles®. It is always possible to find weights

H S — 1 H [
scheme withLr,,, = 100 to provide highly accurate “refer- which perform better than the original ones. We have opti

ence” calculations, with which other methods may be COMAized a number of schemes under different symmetries. W

pared. Other schemes have been reported which provide acels sHREWD as prefix for the sets with optimized weights

rate spherical quadrature out to arbitrarily high ranks, whi or example, SHREWD-ZCWoct89 is the scheme obtained

?féngi;nly 1.5 times less efficient than the Lebedev SChen}%ﬁning the weights of the ZCW scheme over an octant usin

. o . 89 angles. The result of such an optimization is given in Fig. -
We have also developed schemes which eliminate incre g P g g

%Sdmparison of the rank-profiles show a markedly improve

ingly high ranks iteratively, in a purely computational exte performance for SHREWD-ZCWoct89 at essentially all rank
sion of experiments using rotations around multiple ax

. to=40. After this value oL, the sampling moments of the

(32, 36-38. S.O far, this appr_o_ach h_as not generated a 0 schemes are almost identical. Theppa?ameters used in t
schemes which are competitive with the Lebedev a timization wereLs = g = 30, andL = 30 was the highest
SHREWD approaches. rank included in the system of equations.

The optimization process outlined here is successful fc
minimizing sampling moments that are already comparativel

We return now to the case when the system in Eq. [27] $nall. However, large “peaks” appearing in the profiles (com
overdetermined, so that no exact solution is available. It is sfiare Fig. 2) cannot in general be dealt with. Significant im
possible to solve for thieast-squaresolution @1, 39 to the proved performance is only to be expected when the “peak
exact vectow,4e This permits construction of schemes witrappears at relatively high values bof
relatively flat rank-profiles over larger ranges lof,.,. Best SHREWD weighting cannot perform miracles and transforn
results are obtained by incorporating a function which detea- poor sampling scheme into a good one. However, it |

Least-Squares Optimization
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0.020 . . . . where the periodically modulated chemical shift offset fre:
Lo ZCWoct89 quency may be written as a Fourier series
0015+ —— SHREWD-ZCWoct89 .
c,(D,) 2
0.010 | wcs(t, Qyur) = E ol (Qur)explimo,t}, [38]
m=—2
0.005 |- . . .
R and o, is the rotational frequency of the sample. The Fourie
componentso{2(Q,,z) are given by
0.000 10 20 30 40 50
L 2
— CSATPM2
FIG. 3. Rank-profiles for ZCWoct89 and SHREWD-ZCWoct89, where  Oe(Qur) = 0sodro+ 2 [A 1 Dl ()
the latter is obtained by least-square optimization of the weights of the ', mf'=—2
former, includingL = 30 as highest rank in the system of equations lagd :
il ¢ Y quations X DOy d2o(BrJexpl —imagy th, [39]

wherew,, is the isotropic chemical shift frequency. The angle

capable of improving the performance of a scheme which % describes the sample positiontas: 0 and is immaterial
already rather good, and gives much faster convergence 4P&the present discussiofig, is the angle between the rotation
large number of angles. In principle it is also possible XIS and the field, equal tgA%rctavﬁ for exact magic angle
optimize an angle set by allowing the orientatiddSto vary, SPINNING. The _numberso_\gm 1" are components of the CSA
while searching for the set of orientations giving the flatte§gnsor in its principal axis system:

rank-profile. These sets may then be refined further using

least-squares optimized weights. This procedure corresponds Waniso ifm=0
to a REPULSION-type approach, but with the flathess of the csatp 0 ifm= =1
rank profile playing the role of the electrostatic potential. NN 1 : [40]

I+

_ﬁ 7 Waniso if m=

EVALUATION OF AVERAGING PERFORMANCE

The anisotropyw,iso@nd asymmetry parametgrcharacterize
In this section we evaluate the averaging properties of tiie CSA tensor. They are calculated from
Lebedev schemes and compare them with some of the most

popular geometrical methods. Our test case is the calculation of

Waniso = Wg(0,,— Oiso) , 41
spinning sideband patterns generated by a single chemical shift aniso = @0(0zz ~ Bio) [41]
anisotropy interaction in MAS NMR. If the principal axis Oy~ O 42
system of the CSA interaction is used, the calculation conforms M= 5,- Siso | [42]

to D,, symmetry, allowing integration over an octant of the

spherical surface. If an arbitrary molecule-fixed axis frame \'ﬁherewo — —yB, is the Larmor frequency of the nucleus and
used, hemispherical schemes appropriat€teymmetry are 8.. is the mean of the principal values of the tenggg = (8,
relevant. + 8,y + 8,)/3. The principal values are expressed in deshielc

ing units and ordered according &) — sl = [64x — Sisol =
Calculation of MAS Sidebands 18,y — Sisdl-

The calculation of MAS sideband patterns was performed b¥Suppose .that the transverse Tagneﬂzgﬂon c_omponents |

Herzfeld and Bergerl@®) using truncated Bessel function ex-: epar.ed with uniform phase = 0_ at ,t'm?t = 0. The

pansions. The following procedure uses instead a direct tirﬁ@je's'gnal generated from the Hamiltonian in Eq. [37] can b

domain calculation of the form discussed in RéD)( In order expressed as a product of two factors

to establish an unambiguous notation, our approach to the

problem is now formulated briefly. s(t, Qur) = expliodetiexpli®es(t, 0; Qur)}.  [43]
Consider a rotating powder containing a set of isolated

spin-1/2 sites experiencing a chemical shift anisotropy inteThe periodic phas@.t, 0; Qyg) iS given by

action. The time-dependent Hamiltonian for a certain molecu-

lar orientation is

t
Des(t, 0; Qur) = j wcs(Qyr, t')dt’ [44]
H(t, Qur) = wcs(t, Qur)l,, [37] 0
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and can be expressed analytically as

expimm t) — 1
Des(t, 0; Q) = E w(cms) (Qur) {Imwr

| s
m#0

The numerical calculation of the MAS spectrum proceeds
follows. The rotational period, = 27/, is divided inton
segments of equal length= ./n, and the periodic function
exp{id4t, 0; Qur)} is evaluated at each time point= pr,
with p =0, 1, ...,n — 1. Discrete Fourier transformation of

the set of points gives a manifold of orientation-dependent

sideband amplitudes

n-1
a¥(Qur) =n7t 2 expli [Pcs(t, 0; Qur) — 2mpkin]},
p=0
n —k= n 6
—>tl=k=g3, [46]

wherek denotes the sideband index.

The numbem should be even, and when it is equal to a
integer power of 2, a fast Fourier transfor@ilf can be used
for optimal computational efficiency. The frequency span

LEVITT
0.20 T T T T T T T
l‘\ waniso/wr=5 n =0.5 k=2
2;4‘ - —k=-1
0.15 \\ k=0
L e k=1
L, k=2

as

20 28

FIG. 4. (a) Rank profiles of MAS sideband functioh®, —2 < k < 2, for
the case of a CSA tensor with = 0.5 andw,,isdJw, = 5. The estimated,, .,
is approximately the same for all sidebands. Accurate orientational averagi
requires schemes with small sampling moments below ra2R. Because of
D,,, symmetry, the odd rank components are all zero and are not shown.

Calculations in the Principal Axis System

Calculation of MAS spinning sideband patterns is performe
most efficiently by choosing the molecular reference fravme
tb coincide with the principal axis system of the CSA
interaction. This implies usin@g,, = (0, 0, 0) in Eq. [39]. The

-averaged sideband amplitudes™) (ayr, Bur)|? POSSESS

the calculation is given bgiw,. The numben should be chosen symmetry with respect to the angles f, Bug), allowing
to greatly exceed the number of sidebands in the spectrum. 'Imzé1 use of greatly reduced Lebedev scher’ne'\sA.R '

spectrum consists of a superposition of peaks with amplitude

a®(Qyr) at frequenciesn™ =w®+kw, (33, 40. For exact
magic-angle spinningd, = arctan\/2), the Fourier compo-

nent Q) is equal tows,

SWe have evaluated different averaging schemes by fir
calculating a “reference” sideband pattern, using a SHREWD
STEPoct scheme withS,., = 100 requiring 1326 orientations.

and the frequencies are orientationyg cajculation gave essentially identical results to a convel

independent. Sidebands for different orientations are exagtly, step method calculation using ®L6rientations. In all

superimposed.
The powder averaged sideband amplitafi2ia given by

a = (a® (Qur)) s [47]

where(: - )q, . represents an average o¥eyz. As shown in
Ref. (17), the integration overy may be taken into account

cases,n was chosen to be much larger than the number c
significant sidebands, and it was verified that further increas
in n did not significantly affect the sideband amplitudes. The
reference spectrum may therefore be considered to be exac

The powder performance of each scheme was evaluated
calculating the maximum deviation in sideband amplitude

ad, relative to the reference spectr@@; over the entire set of

simply by taking the square modulus of the amplitude. THddebands:
calculation may therefore be reduced to a two-angle integral:

al = f |a(k)(aMR: Bur 0)|2dQ- [48]
V&)

The squared sideband amplitudes are the target functions
orientational averagingt ) (Q)=]a® (Qyr)|?. Integration
is performed by a weighted summation over sets@fd, Bur)
pairs, as described earlier.

We have verified that the spreadlgf,, among the various

[49]

NI S

_ _ n
Ersnaxzma){lag()_a(lé“}ky _E +1=k=

wherea® is the integrated sideband amplitude when usini

schemeS. Since the largest sidebands in the spectrum tend
liarve the largest errors, this error function has the advantage
being independent of the number of evaluated sidebands,
long as the calculation has sufficient bandwidtiOther eval-

uation criteria have also been tried. The conclusions reach
about relative integration properties for different schemes al

sideband orders is rather uniform in typical cases. The rrassentially independent of the choice of evaluation method, |

rank-profilesf (V=]a®) |2 for a set of sideband indicdsare
plotted against in Fig. 4.

long as systematic errors are avoided.
Plots ofe€;,,, are shown in Fig. 5 for different shift anisotro-
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FIG. 5. Powder averaging performance for MAS sideband amplitudes from a CSA tensor in its principal axis system. Five powder approaches wel
ZCW and REPULSION over full sphere, denoted ZCW and REP, respectively, and octant versions of ZCW (ZCWoct), Lebedev (LEBoct), and step |
(STEPoct). Left diagrams: Maximum sideband eregr, (Eqg. [49]) for each scheme plotted against number of orientations. Right diagrams: MAS spectr
(amplitudes). (@wanisdw, = 5 andn = 0.3. (b) wanisdw;, = 8 andn = 0.3. (C) wanisdw, = 12 andn = 0.7.

pies and asymmetry parameters. The following schemes ardy experience significant competition in more demandin
evaluated: Lebedev over octant (LEBoct), REPULSIONases such as in Fig. 5¢, where the ZCWoct and STEPC
(REP), ZCW over full sphere (ZCW) and octant (ZCWoct)schemes start to gain ground slightly.
and step-method over octant (STEPoct). In Fig. 5a, the cas@he case in Fig. 5b is examined more closely in Fig. 6. Her
wanisd®w; = 5 andn = 0.3 is investigated. The Lebedev methothe computed sideband amplitudes for different schemes &
converges very rapidly and reduces the error below 0.0026mpared with an exact reference spectrum. In Figs. 6a, d, a
using a scheme with ., = 17, requiring only 19 angles. Theg, all schemes involve around 20 angles. None of these ha
error is reduced ta>,_ = 10 ° using only 31 orientations, converged. LEBoct31 is compared with ZCWoct34 and STEF
corresponding to a scheme witl,., = 23. None of the other oct36 in Figs. 6b, e, and h. There is almost no visual differenc
schemes reach this accuracy with fewer than 1000 orientatiobstween the spectra obtained from the Lebedev set and t
In this regime of shift anisotropy, the REPULSION methodeference spectrum. All of the other powder methods sho
outperforms ZCW. Orientational averaging using randombtrong deviations. In Figs. 6c, f, and i, these schemes a
chosen points on the sphere requires around 20,000 oriem@mpared for around 85 angles. The STEPoct scheme has n
tions to reduce the error to below0.0025. The computational attained near-convergence, while the ZCWoct method st
speeds for the best (Lebedev) and worst (random) methati®ws deviations.
differ by a factor of 1000. The comparison in Fig. 5 also reveals an interesting distine
The Lebedev schemes also outperform the other approacties between ZCW schemes in which sampling points ar
in the more demanding case in Fig. 5b, in which the ratdistributed over a full sphere, and those in which the points al
wanisd @y 1S increased to 8, keeping the asymmetry paramet@stricted to an octant. Generally speaking, we have found tl
constant atn = 0.3. A markedly decreased performance iectant version to be better in cases with> 0.5, while the full
noted for the REPULSION schemes, which is even mosphere version is often better fof < 0.5, and isalways
pronounced in Fig. 5¢, where the following CSA parametesuiperior when a very large number of orientatioNS £ 400)
are used:w,,do, = 12 andn = 0.7. It should be noted, is used to obtain high accuracy.
however, that the REPULSION sets are not adapted to thdt is perhaps surprising that ZCWoct is not always superic
symmetry of the function. to ZCW, given that the density of sampling points is muct
In all three cases depicted in Fig. 5, the Lebedev octant shtgher in the octant case. It seems that the accuracy of num
are clearly the best choice for integration. The Lebedev sétal integration depends on subtle details of the sampling ar
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FIG. 6. Calculated MAS sideband amplitudes for some of the schemes used in Fig. 5b, compared with an exact reference spectrum (ref). For cle
sideband amplitudes are joined by continuous lines (for the evaluated scheme) and dotted lines (for the exact spectrum). (a) Lebedev over octant wi
(b) 31, and (c) 85 orientations; ZCW over octant for (d) 21, (e) 34, and (f) 89 orientations; and STEPoct with (g) 25, (h) 36, and (i) 81 orientations.

cannot be quantified by a simple criterion such as samplisgale). The superiority of SHREWD-ZCWoct over ZCWoct is
point density. The poor performance of octant versions obvious. Different versions of REPULSION are also con
ZCW at large numbeN® may be related to the fact that ZCWtrasted: REP uses weights as described in R2%). (The
was originally developed for integration over rectangulaachemes SHREWD-REP were obtained from an least-squal
bounds in two dimensions. The boundary conditions in octamptimization, as described earlier. Although SHREWD weight
integration on the surface of a sphere are quite different. ing provides some improvement, all of these methods are st
The improvement of performance of ZCWoct and REPULelearly outperformed by the Lebedev schemes. Presumably, t
SION through SHREWD weighting is illustrated in Fig. 7. Theerformance of REPULSION would be further enhanced b
simulation parameters of Fig. 5a were used (note the magnifedhpting it to the symmetry of the function, as suggested |

Ref. 25).
0.002 ' ' o Lesoat Calculations in an Arbitrary Molecular Frame
e Zowet It is also possible to calculate MAS sideband amplitude
X RE;EWD - using an arbitrary molecular franid, instead of the principal
5 It s ’ axis frameP. The calculation then involves an extPa— M
o 00011 \ ] transformation, as described in Eq. [39]. The orientations
o *—| variable in this case i€yr = (@urs Bur: YMR)-
For an isolated spin-1/2 site, there is no advantage in usir
an arbitrary frameM instead of the principal axis franie The
0,000 o D N S R X calculation is mtroQuceq here mer(_aly as an example @ijth
300 400 symmetry of the orientational function.
number of orientations The y-averaged sideband amplitudes™] (ayr, Bur)I?

FIG. 7. Demonstration of improved powder schemes by optimization of tﬂgave the symmetry propert)l'(, 4])
weights for REPULSION and ZCWoct. The parameters are same as in Fig. 5a, but
tFr;e scale is enlarged. The_ schemes are REPQL$ION WIFh weights as described in |a(k) (otyrs Bur, 0)|2 — |a(k) (oyg + 7 — Bur,s 0)|2' [50]
ef. 25), REPULSION with least-squares optimized weights (SHREWD-REP),
and ZCWoct with least-squares optimized weights (SHREWD-ZCWoct). The
performance of the Lebedev octant schemes is also shown. This allows the integration to be performed over only one
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FIG. 8. Powder averaging performance for MAS sideband amplitudes using a CSA tensor in a set of 100 arbitrary molecular reference frames. Five
approaches were used: ZCW and REPULSION over full sphere (ZCW) and (REP), respectively, and hemispheric versions of ZCW (ZCWhemi), L
schemes (LEBhemi), and step method (STEPhemi). Left diagrams: Maximum sidebandegrrof&q. [52]) for each scheme plotted against number of
orientations. Right diagrams: MAS spectrum (amplitudes) «(g).Jw, = 3 andn = 0.8. (b) w nisdw, = 8 andn = 0.5.

hemisphere G= ar < 2, 0 = Byr = 7/2. Integration may the calculation and also of the ensemble of molecular frame
be performed using “hemispheric” Lebedev sets which hawd, once a sufficient number is chosen.

exactly half the number of angles of the full Lebedev sets. The Lebedev sets again give fastest convergence. In Fig.
Consider a calculation of the powder averaged sidebatite CSA parameters are,,.Jo, = 3 andn = 0.8. All

amplitudea® using a certain sampling scheme for orientationsethods converge to approximately 1% accuracy within 10

Qur- In general the result of this calculation depends on tlagles. However, the Lebedev sets converge faster than &

relative orientation(),,, of the principal axis frame and theother scheme. The next best in this regime is REPULSION.
molecular reference frame, and may therefore be denoted In Fig. 8b a more difficult case is investigatad; .o, =

8 andm = 0.5. Again, the Lebedev sets converge faster tha

2(K) _ S[4 (k) iR any other method, although the ZCW hemispheric sets no

35" (ew) = 2 wila™ (Qem, QI B otfers significant competition. The ZCW and REPULSION

J . .
full-sphere sets have very similar behavior.

To avoid systematic bias due to a particular choice of trans-

formationQp,,, we follow Bak and Nielsen25) and repeat the PRACTICAL RECOMMENDATIONS

calculation for a large number of transformatiofis,,. In _ _ _ o _ _
practice, we used 100 randomly chosen orientations. The errof Ne subject of orientational averaging in solid-state NMR i

criterion used for evaluation of the schemes was very complex. The best strategy to use depends on (i) tt
symmetry of the NMR response with respect to orientatior

and (ii) whether only themplitudesof the peaks are orienta-
tion-dependent, or both the amplitudes and the gesduen-
ciesare orientation-dependent.

ema=max|al? (Qew) — afeil}bi,

_g+1§k§g,15|5100, [52]

Orientation-Dependent Peak Amplitudes Only

that is, the largest absolute error in any spinning sidebandAt the moment, Gaussian spherical quadratures appear to
amplitude, scanned over all choices of reference freln&he most useful for cases where the peak amplitudes are orien
reference amplitudea®) were obtained from converged cal-tion-dependent, but the peak frequencies are not. This includ
culations using the principal axis frame. The criterigi),, is many dynamically inhomogeneous problems, such as the spt
roughly independent of the number of sidebands involved irum generated by isolated spins-1/2 under exact magic-ang
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suggests that the rank profiles of the amplitud®sand side-
] band frequencies™ both cut off at about the same rank as
] indicated in Fig. 9, if the sum of sizes of all interactiang; is
used. However, in general, the rank profile of the tciaédc-
. trum Sw) often displays a much slower convergence. This i
] because the amplitude of a certain point ingpectrunmay be
| a very sharp function in orientational space, even when tf
4 frequency of the resonangeeakshas a smooth orientation
dependence. As a result, the maximum rank required in tt
' Lebedev schemes is usually much larger than expected frc
lo ol Fig. 9. In these cases, it seems that the Lebedev schen
anse cannot reduce the number of orientations required for linesha
FIG. 9. EstimatedLr,,, for different ratiosw,nsdw, and asymmetry pa- simulations. Preliminary tests indicate that the Lebede
rametersn. schemes give similar performance to the ZCW and REPUL
SION methods for a comparable number of angles, while i
some cases, the Lebedev sets are worse. The Lebedev sche

spinning, as evaluated earlier. Another example is the evolys nowever, perform best if the required frequency resolutio

tion of multiple-quantum coherences under heteronuclear 10¢a,\, or equivalently, at relatively short times in time-domain
fields, as in the recently developed experiments for determif)z, iations.

ing molecular torsional angled {7).

>

50 - ]

X O

40

=

30 -

max

20

10 -

e 2 .. . ltis probably feasible to develop computational algorithm:
For such applications, it is useful to have some insight infghich calculate the spectrusifw) through an estimation of the
the maximum spherical ranlg,, of the function to be aver- accyrate orientation dependence of the frequenosand
aged. We have evaluated rank profiles for a variety of asymw rather than by a crude accumulation of amplitudes at a s
metry parameterg and ratios in the range % |wanisdox| = 12 ot gpectral frequency coordinates. By using Lebedev samplir
for the case of exact magic-angle-spinning of isolated Spingr ihe calculated peak frequencies, in conjunction with a li
1/2.In Fig. 9, plots ofl.p, against the rat'on‘dargisJ“’r' for  prary of precomputed Wigner functions at the Lebedev angle
three different asymmetry parameters are sholii, grows i shoyid be possible to estimate very accurately all the sphe
as both dqpisdwr| andn increase. For a fixed, Lyax depends ica| momentsf,,, of both the peak amplitudes and the peak
almost linearly ondapisde|- _ _ frequencies. The full orientation dependence of the NMR re
As d_lscussed in Ref:4Q), @aniso 1S usually most reliably sponse is therefore defined precisely using a minimal numb
determined from experiments using=3 |wanisdox| = 5. BY ot computed orientations. Conversion of this information intc
comparing with Table 1, we see that in this range, calculatiofig, gpectrum is nontrivial, but it should be possible to exploi

using LEBoct schemes requires most31 orientations for jnterpolation algorithms20, 22—24, 3D This is an interesting
highly accurate sideband amplitudes (assuning symme- qiraction for future research.
try). On the other hand, for rotating solids, the most reliable

determinations of the asymmetry parameter are generally made
in the slow-spinning region otu,,Jw,| = 10 @42). This is in
general outside the range of applicability of the Le_bedev Gaussian spherical quadrature is used in many fielc
schemes, and here SHREWD schemes may be used instegltsige of NMR to obtain accurate spherical integrals witl
Figure 9 may also be used in more general situations, as IQfghima| computational effort. The main conclusion of this
as only the peak amplitudes depend on orientation, and not figicje is that these schemes can also offer significant a
peak frequencies. The value th'nax may be estimated by \aniages for the calculation of certain types of powde
replacing wapiso With w;p, the size of the interaction underyyerage in solid-state NMR. The Lebedev sets are partic
study. If several interactions are involved, a very conservatiygny well adapted to problems in which the amplitudes o
estimate Ofl,, is obtained by using the sum of albil|- I he" NMR peaks are orientation-dependent, while the pes
many cases, the convergence is much faster than predicigdy jencies are not. The Lebedev sets are probably close

especially if the calculation is made in the PAS. the global optimum in these cases and can save large fact
For problems of this type, the function to be averagegk computational time.

always display orientational symmetry, so the reduced hemi-|,, this paper we have also demonstrated that any oth

spherical or octant Lebedev sets should be used, as appropr'@éﬁ]p"ng scheme may be improved by optimizing the weight

to minimize a selected set of spherical sampling moments.
Gaussian spherical quadrature has an advantage o\
In most computationally intensive problems, both the peakther methods only if the spherical components of th
amplitudes and peak frequencied” are orientation-depen- averaged function become very small beyond a maximul

dent. Our limited experience with these more general casgsherical rankL! ... For the NMR spectrum, this usually

CONCLUSIONS

Orientation-Dependent Peak Amplitudes and Frequencies
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holds only if the peak amplitudes, but not the peak frequen-Integrating over amctantcorresponds to the ranges £ «

cies, depend on orientation. We do, however, anticipate tken/2, 0 = B = #/2}, using the angles

development of new algorithms which exploit the power of

the Gaussian spherical quadrature methods even in very T

general cases. %= N, (2i+1),0=i=N,—-1 [56]
In this article, we have also classified solid-state NMR

problems in terms of the orientational symmetry they display

and showed how this symmetry may be used to speed up the

numerical computation. Certain orientational sampling [57]

schemes, such as the Lebedev sets, are well adapted to sym-

metry reduction. In other cases, for example the ZCW angi@d weights as in Eq. [55].

sets, restriction to a fraction of the orientational space does not

appear to produce such large improvements. ZCW

In summary, the Lebedev sets do not represent a completelyrne sets from the ZCW algorithm are generated from nur

in solid-state NMR, but do offer very significant gains fofgm

certain classes of problems. For the calculation of MAS spin-
ning sideband patterns, the use of Lebedev sets can reduce the
required computational time by large factors.

All orientational sampling schemes used in this article may.. 9o = 8 andg, = 13. For a giverM, the set contains
be obtained from the authors upon request or directly from the
Web site http://www.fos.su.se/physical/mhl/home.html.

ﬂ- . .
Bj=4—NB(21+1),0§JSNB—1,

gu = gM72+ Ov-1, M = 0, 1, 2, PR [58]

Ny = Ou+2 [59]

APPENDIX 1 . . .. .
orientations, comprising the following angles:

Specification of Orientational Averaging Schemes

The performance of orientational averaging schemes is verya! = am modjgu/Ny, 1}, 0=j=N, -1 [60]
sensitive to small details, and a number of minor variants exist
in the literature. We specify here the methods which we used ,BJ-M = arccofc, (c;modj/Ny, I} — 1], 0=j=N,—1. [6]]
in our evaluations.
Here c;, ¢,, and c; are components of a vectar, which

Step Method depends on the range of integration. We have for
The implementation of the STEP method listed here appearga) full spherec = (1, 2, 1)
to be more efficient than other versions we have tested. (b) Hemispherec = (-1, 1, 1)

We assume the ranges of integration for thand 8 angles (c) Octant:c = (—1, 1, 4)
to be divided intoN,, and N, segments, respectively, giving a _ .
total number of orientationtl,e, = N,Ng. In the calculations N the ZCW schemes, the weights are equif, = Ny,
in this paper, we use equal steps in the anglesd 3, giving

N, = 4N; for the hemisphere and, = N, for the octant. APPENDIX 2
For thehemispherave integrate over {0= o < 27, 0= _ _ ) )
= m/2}, selecting angles as follows: Orientational Symmetry in Solid-State NMR

In this appendix, we explore the orientational symmetry o
solid-state NMR signals. Although some of these symmetrie
are obvious, some only appear after “carousel averaging” ove
one of the orientational angle&?).

B :l(Zj +1),0=j=N,— 1. [54] Consider the general case of the NMR sigsé| Qy,z)
4N, generated by a nuclear spin system at tinfieom molecules

with orientation(),,, specified as the three Euler angleg,§,

This gives a se§.m = {W}, o, B} with weights depending g v,.), relating a molecule-fixed fram®l to a frameR

2T .
aizN—l,OS|sNa—l, [53]

on only theg angle, according to fixed with respect to a sample holder. In general, the samp
holder may itself be rotating, so the Euler anglg = (ag,
WP=NgepSING; [55] Bg., vrL) relating the frameR to a fixed “laboratory” frame

L are time-dependent. For rotation at a fixed angular frequen
whereN gep = (N, =¥ * sing;) ™ o, about thez-axis of frameR, the first Euler angle isg, =
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ad, — o, while B, is the angle subtended by thexis of In a rotating sample, each interactioh is periodically
framesRandL. It is usual to define the-axis of framel as the modulated, so that
field direction so thatBg, is the angle subtended by the
spinning axis and the field. The angld, defines the orienta- Ha(t, Qur) = > HM™(Qur)explimo, t}, [65]
tion of the frameR at timet = 0, which is defined here as the m
start of the NMR signal acquisition. For simplicity, the frame
Ris chosen such that%, = 0 in the following discussion. In and
high-field NMR the angley;, does not affect any observations
and may be chosen arbitrarily. (m) — [AA TRAL A
The high-field truncated Hamiltonian at timér molecules HA (Qr) = [Aln]"dro(Bru) Tho, [6e]

in orientation{yr may be written where the rotor-frame spherical tensor is

H(t, Qur) = 2 Halt, Qug), [62] [ALTR= 3 [AL VDL Qur) - [67]

A m
with The NMR signal from an orientatiof}y, at timet is given by
Hy(t, Qur) = [AL] T, [63] s(t, Qur) = TH{QILV(t, 0; Qur)p (0, Qur)},  [68]

whereQ,sis the observable spin operator as(@) is the spin
density operator at the beginning of observatidhis the
propagation superoperator, satisfying the equation

where the sum is over spin interactios andTﬁ}M is the uth
component of an irreducible spherical spin operator of rank
Similarly, [AN]7 is the mth component of an irreducible
spherical tensor of rank, expressed in framE. Such tensors
may be transformed between the general framasdG, using E\A/(t, t: Qur) = —iF (t, Q) + f(t, Q)
Wigner functions: dt

V(ta, ta; QMR) = 1! [69]
[Al]" = 2 [Aln1°Dhim(Qcr) - (64]
m whereH is the Hamiltonian commutation superoperator &nd
is the relaxation superoperator. In this appendix, we explore tt
In general, the “spatial rank’L is not necessarily equal to symmetry ofs(t, (),z) with respect to orientatiofy,.
the “spin rank” w, because some spin interactions involve In the general case, there appears to be no symmetst, of
a three-way interplay of spins, molecular properties, and tlig,g) in the three-dimensional orientational spacedyfi£, Bur:
external field. In much literature the ‘spin part” of anwy,g). However, it is worth mentioning an interesting symmetry
interaction is actually a conflation of spin terms and theroperty with respect toeversalof the sense of rotatiorof the
external magnetic field, a practice which is best avoidedmple. The following symmetries of the Wigner functioh€)(
because it obscures the rotational symmetry of the interac-
tions with respect to the spin polarizations alone. In the DL (7 + ayr, ™ — Bur, ™ — Yur)
present discussion, refers to the irreducible spherical rank _ Lt ot L
with respect to rotations of the spin polarizations (keeping = (=1 D (@wr, Bur: Yur) [70]
the molecules and external fields fixed), dndefers to the dso(Bur) = (=1)™d" o (Bur) [71]
irreducible spherical rank with respect to rotations of the
molecules (keeping the spin polarizations and external fielgfay be used to demonstrate the property
fixed). For example, some common spin interactions have
the following spin/space ranks: Isotropic chemical shift:
= 1; L = 0. Chemical shift anisotropyA = 1; L = 2.
Antisymmetric chemical shiftA = 1; L = 1. Scalar spin—
spin coupling:A = 0; L = 0. J-coupling anisotropyA = 2;
L = 2. Through-space spin—spin coupling:= 2; L = 2.
AntisymmetricJ-coupling:A = 1; L = 1. ~
Most of theL = 1 terms do not appear in the high-field avr = T+ Qyur
truncated spin Hamiltonian. The only exception is the antisym-
metric J-coupling term § = 1; L = 1), which has, however,
never been observed in practice. YMR = T — YMR- [73]

Hf{n)(QMR) = (_1)LH‘({m)(QMR)v [72]

where the orientatiof) is related toQur = (mr» Bur:
yur) as follows:

BMR =7 — Bur
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The spin Hamiltonians at a given tiniefor the orientations single-pulse excitation or idealized Hartmann—Hahn cross-p

Qur andQ,,, and rotation frequency,, are therefore related larization.

through The angled (1, t,; Q) is the accumulated dynamic phase of
the coherencailv| over the intervat, — t,, given by

HA(ti Wy, QMR) = (_1)LH/\(tl — Wy, QMR)' [74]

b
Now in a powder sampleall orientationsQ,,, are equally Pu(ty, ta; Q) = _J wu(t, Q)dt, [79]
represented. If all spatial ranksare even,it follows that the ta

NMR signal from a powder sample is independent ofshgm

of w,, that is, the sense of rotation. If an orientatify,r Wherew (t, Q) = o,(t, Q) — w/t, Q). This phase angle may
experiences a certain sequence of spin Hamiltonians whas written in general

rotating the sample in one direction, then a different orientation

Q,\,,.R experiences precisely the same sequence of _spin.HamiI—q)w(tb, t: Q) = expl—i(t, — t.) @ (Q)}explié,(ty, Q)
tonians when rotating the sample in the opposite direction. In

a finely divided powder, the total NMR signal is independent X exp{—i&u(ta, Q)},
of the sense of rotation. The same conclusions were reached in
a different way by Gullion and Conradi9). where ,(Q) is the difference in the average of eigenvalue:

Interestingly, this conclusion is strictly valid only if all sping () — @) over the rotor period, and thefunctions are
interactions havevenspatial rankd.. Odd-spatial-rank inter- defined 43)

actions (such as the antisymmetdicoupling) might therefore

be detected by comparing signals from finely divided powder

samples rotating in opposite senses. £6Q)=->
We now examine the consequencedghamical inhomoge- m#0

neity (33) of the spin HamiltoniarH(t), that is the case where

the Hamiltonian commutes with itself at different times, so itg;ce explé,(t, Q)} is periodic, it may be written as a Fourier

eigenstates may be chosen to be time-independent. The eigen;as-

values ofH(t, }) are denotedo,(t, 1) and are periodically

modulated:

{0™(Q) — o™ (Q)}exgime, t}
imw, '

[80]

©

explién(t, )} = X CR(Q)explike t}.  [81]

k=—o0

oot Q) = S 0™ (Q)explimet}, [75]

The signal componers,, may also be written as a superposition

where the eigenvalue Fourier components @f8(Q). In this of sidebands at frequencied(Q) + ko, with @ = —a,;

and subsequent equatiotik, is written() for simplicity. The
NMR signal for dynamically inhomogeneous evolution may be
expressed ®
sw(t, @) = 2 al(Q)explilwf(Q) + ke ]t}.  [82]
s(t, Q) = 2 su(t, Q). [76] A
By repeating the arguments in Ref$7) and @3), it is possible
where s,, is the signal associated with cohereneg(y|, © relate they-averaged signal component to the Fourier com

given by ponentsC{):
sw(t, Q) = Z,explid,(t, 0; Q)}. [77] (@l (e, B))y = ZuICH Q). (83]
Here Z,, is the amplitude for excitation and detection ofSinceaw,, is independent o, this implies that the calculation
coherenceu)Vv|: of the signal may be reduced to a two-angle average aver (
B) of the functions X Q).
Zu = (U[QL V)V p (O)|u). [78]  The symmetries o€{) may now be established. From Eq.

[74], omitting odd rankd., the Hamiltonian eigenvalues have

It is an important feature of the following discussion th&d) the symmetry

and hence&,,, are assumed to be independentbfThis is in B
general only true for simple pulse sequences such as idealized w,(t, Q) = o,(-t, Q), [84]
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which corresponds to the following relationships of the Fourier HM™Q') = H{™(Q). [92]
components for orientatio? and ():

This is analogous to Eg. [74], and the same reasoning may

o™ (Q) = 0™ (Q)*. [85] followed to establish the following symmetry of theaver-
aged signals:
This in turn leads to the following relationship of ti§€unc-
tions (@) (), = @y (Q"),. [93]
En(t, Q) = =&, (=, Q), [86] The three properties of Egs. [88], [90], and [93] establist
together theD,,, symmetry of they-averaged MAS signal in
and hence to the symmetries this case.
The symmetry properties of NMR signals from static solid:
cl(Q) = cH(Q)*. [87] are much easier to establish since there is no intermedic

reference fram®, and noy dependence. The preceding equa

It follows that they-averaged signal components from orient—IonS may be used directly by settiff, = 0. For example,

tations of the typed, B) and @ + «, 7 — B) are identical: Eq. [74] leads immediately to
<a3§/)(9)>y = <a3§,>(Q)>y_ [88] HEA())(QML) = (_1)LHE?)(QML)- [94]

This proves theS,-symmetry property in the case of a dynam>ince only them = 0 Fourier component existsfiiz, = 0, this
ically inhomogeneous interaction, with orientation-indeperroperty immediately establishes symmetry for static solids
dent coherence preparation at the beginning of detection. THi®dd-spatial-rank interactions are ignored. It follows thai
property applies independent of choice of reference frame. Oriéntational averaging over a hemisphere is almost alwa
We have recently shown tha, symmetry also applies to suff|C|enft in static solldsZ_O). The D, symmetry of static.
several important classes of dynamiclymogeneousroblems, SPectra in t.he case of a single interaction using the princip
for example, the calculation of powder NMR spectra for arbitradXiS frame is also well knowrBg). o
systems of coupled spins in rotating solids, in the absence of RF he preceding arguments were developed for the high-fie
fields. Using the COMPUTE algorithn4(@), a three-angle aver- limit. Second—prder guadrupolar interactions are readlly_ a
age may be reduced to a two-angle average over half of ffgmmodated in the same framework by using a modifie
sphere. This is discussed in a subsequent arfde ( qugdrupolar .Hamlltoman vx_/h|ch incorporates second-orde
In the case of a single interaction, or many interactions wiffifts @4). Since all correction terms still have evén the
the same principal axis frame, the fratdemay be chosen to conclusions of this article are unchanged.
coincide with the principal axis frame. For evernteractions,
this implies the symmetries ACKNOWLEDGMENTS
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